
Identifying Optimal Parameters for Approximate
Randomized Algorithms

Vimuth Fernando, Keyur Joshi, Darko Marinov, Sasa Misailovic
University of Illinois at Urbana-Champaign
{wvf2,kpjoshi2,marinov,misailo}@illinois.edu

Abstract
Many modern applications require low-latency processing
of large data sets, often by using approximate data-analytics
algorithms that trade accuracy of the results for faster execu-
tion or less memory consumption. Although the algorithms
have theoretical accuracy and performance guarantees, the
guarantees are often too conservative. In contrast, empiri-
cal models may give tighter error bounds but often come
without guarantees of any sort. In this paper, we study the
differences between the analytical and empirical models of
accuracy, performance, and resource consumption, and op-
portunities for combining the two approaches. Based on
our initial study, we discuss several interesting directions to
leverage both analytical and empirical models.

1 Introduction
Manymodern applications require low-latency processing of
massive data sets. To meet such demands, researchers have
developed various approximate algorithms, data structures,
and systems software that trade accuracy for performance
and/or memory consumption. These applications often come
with analytically derived accuracy and performance specifi-
cations, which are typically probabilistic. Probabilistic speci-
fications have been proposed for applications in areas as di-
verse as theoretical computer science [7–9, 12, 18, 21], numer-
ical computing [10, 11, 14, 20], and databases [3, 4, 13, 19, 23].

Probabilistic specifications often come in the form of prob-
ability predicates, which specify the expected probability
that the output satisfies a particular condition, or expectation
predicates, which specify the expected value of the output.
The specifications usually contain algorithm parameters that
control the accuracy but also directly impact performance,
energy, and/or memory consumption. The user can set the
configuration of such an algorithm (i.e., the values for the
parameters) to obtain the results with guaranteed accuracy
within guaranteed execution time.

We recently demonstrated how to leverage analytical spec-
ifications to check that an algorithm has been correctly imple-
mented: AxProf [16] is our algorithmic profiling framework
for randomized approximate programs. AxProf helps de-
velopers test if their implementations satisfy an algorithm’s
specifications provided in a formal notation. AxProf produces
the code that (1) generates inputs according to a distribu-
tion that may reveal problems, and (2) selects an appropriate
statistical test and how many trials to perform.
However, analytical probabilistic specifications are often

too conservative as they have to take into account worst-
case scenarios or perform average case analysis for a large

input domain. We present one such example in Section 2. In
addition, algorithm implementers can make design decisions
that make the implementation behave differently from the
algorithm specification. Developers commonly implement
poly-algorithms which, based on the input parameters, may
select and run one of many basic algorithms. Finally, for some
applications it is impossible to derive analytical error models
based on algorithm parameters due to complex interactions
among parameters (e.g., [15]). These factors make it difficult
for users to identify values for parameters to satisfy their
accuracy and performance requirements.

Alternatively, empirical models based on dynamic execu-
tions of programs may yield algorithm configurations that
satisfy accuracy requirements but provide better time or
memory usage. Autotuning frameworks are commonly used
for this purpose: they explore the space of program configura-
tions, looking for those that satisfy various accuracy bounds
on concrete inputs. However, empirical models cannot pro-
vide guarantees, and can substantially depend on the inputs.

We identify the opportunity to design new hybrid accura-
cy/performance/consumption models that enjoy majority of
the benefits of both analytical and empirical models. In this
paper, we present an initial study that shows the potential for
the applications in this domain to tolerate noise and compare
error bounds derived from analytical and empirical studies.
We then present several challenges and promising research
directions to develop more principled empirical models that
would respect and adapt to analytical bounds.

2 Example: CountMin Sketch
The CountMin sketch algorithm [8] estimates the frequency
of items in a dataset. The algorithm maintains a set of uni-
form hash functions whose range is divided into a set of
bins. For every item in the dataset, the hash functions are
calculated and a counter in each mapped bin is incremented.
The frequency of an item is calculated as the minimum value
of all the counters in corresponding bins.

The algorithm comeswith a probabilistic specification that
defines the errors to be expected, in this case the difference
between the estimated count from the CountMin sketch and
the actual count for each unique element:

P[Error < n ∗ ϵ] > 1 − δ

for some user defined ϵ and δ (n is the size of the input).
To achieve this accuracy specification, the algorithm needs

to set two parameters,w (the width of each hash table), and
d (the number of hash tables to use) to the following values:

w = ⌈e/ϵ⌉, d = ⌈ln(1/δ )⌉



Figure 1. Errors: CountMin
Sketch (default)

Figure 2. Errors: CountMin
Sketch (tuned)

Figure 3. Memory usage of CountMin Sketch

While sound, these parameter assignments are often too con-
servative, especially for data sets with fewer unique items.

Figure 1 shows a histogram of errors we observed by run-
ning an implementation of the algorithm called awn [2] for
a randomly generated dataset of 100,000 items. The figure
shows on the x-axis the error and on the y-axis the number
of elements with that error. A user setting ϵ to 0.05 and δ to
0.1 would expect the error in the count to be at most 5,000
for most elements (the vertical line) based on the analytical
specification. As can be seen from the figure, the observed
errors are much lower than this expected threshold.
How conservative is the specification? We start by iden-
tifying a representative input set or input generator that can
provide expected inputs, the configuration space (the param-
eters to tune and the legal range), and the tuning objective
for each algorithm (optimize memory usage or runtime). For
our example, we used an input generator from AxProf to
generate lists of numbers drawn from Zipf distributions with
multiple skews as the representative inputs. The configura-
tion space is made out of potential values for w (1–1000)
and d (1–10). We then used Opentuner [6] to tune the al-
gorithm to find the best values for w and d that satisfied
the error threshold for all the generated inputs, while min-
imizing memory consumption. To test that the algorithm
satisfied the error threshold, we used AxProf’s automatically
generated statistical testing code [16].

Figure 2 shows errors we observed by setting the parame-
ters of the algorithm based on an empirical model learned
using autotuning. The observed error is now closer to the
expected threshold but still below it. The algorithm finishes
30% faster and uses 50% less memory compared to setting
the parameters according to the analytical specification.
Figure 3 shows the memory consumption model we cre-

ated using our autotuner for a CountMin implementation [2].

It shows the memory usage (y-axis) by the algorithm imple-
mentation to achieve the error guarantees (x-axis). The re-
sults show that thememory consumption can be significantly
reduced using algorithm parameters with a tunedmodel com-
pared to using the analytical specification. The benefits are
larger for small error thresholds when the conservative an-
alytical bounds result in higher resource consumption. We
observed similar benefits for runtime.

3 Challenges and Future Directions
Adaptive Algorithms. When the algorithm accuracy is
data dependent, the algorithm parameters can be set based
on the input to achieve optimal performance. However, if
the input is very large, pre-analyzing the data may not be
possible. An interesting direction in run-time adaptation was
pioneered by IRA [17], which generates approximations for
image processing applications, while also identifying a slack
region between the prediction on the smaller input and the
full input. This idea was later extended by VideoChef [22]
for streaming videos. A challenge for applying this approach
to data-streaming applications is finding a similar notion of
small “input sequence” or “time window”. However, accuracy
specifications can guide development of inexpensive off-line
models that extrapolate the runtime accuracy predictions.
RuntimeMonitoring.An implementation can periodically
estimate the error at runtime. If that estimate starts to exceed
an acceptable threshold, it can issue a warning or change
to a more accurate configuration of the algorithm. Recently,
Albarghouthi and Vinitsky [5] presented a monitoring of
probabilistic constraints to check fairness specifications. A
key challenge for this direction will be balancing the over-
head of runtime monitoring and the benefits provided by
alternative algorithm selection.
Reducing Offline Training Time. The time required to
generate models can be high. For each configuration, we
must test multiple inputs, and for each input, we must exe-
cute the algorithm multiple times to check conformance to
accuracy specifications. Sequential sampling methods can be
used to reduce the number of executions while maintaining
a sufficient degree of statistical confidence.
Comparing Implementations. Building principled hybrid
analytical/empirical models offers an opportunity to more
precisely compare different implementations that satisfy the
same specification but with different properties (actual ac-
curacy, performance, memory consumption). We found two
implementations of CountMin sketch on GitHub—awn [2]
and alabid [1]—that request memory quite differently. Such
differences can be discovered by empirical models we de-
scribed here. Constructing the empirical tradeoff frontiers
may reveal that one implementation dominates the other,
or more likely, that they operate better for different input
sets. In such situations, we envision selecting the implemen-
tation based on the statistics of a small initial data set, thus
automatically constructing approximate poly-algorithms.

2



Acknowledgements
The research presented in this paper was funded in part by
NSF Grants CCF-1629431 and CCF-1703637.

References
[1] 2018. Count-Min Sketch github.com/alabid/countminsketch.
[2] 2018. CountMinSketch github.com/AWNystrom/CountMinSketch.
[3] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar,

Michael Jordan, Samuel Madden, Barzan Mozafari, and Ion Stoica.
2014. Knowing when you’re wrong: building fast and reliable approxi-
mate query processing systems. In SIGMOD.

[4] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. 2013. BlinkDB: queries with bounded
errors and bounded response times on very large data. In EuroSys.

[5] Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-Aware Pro-
gramming. In FAT.

[6] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U. M. O’Reilly, and S. Amarasinghe. 2014. Opentuner: An extensible
framework for program autotuning (PACT).

[7] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Commun. ACM 13 (1970).

[8] Graham Cormode and Shan Muthukrishnan. 2005. An improved data
stream summary: the Count-Min sketch and its applications. Journal
of Algorithms 55 (2005).

[9] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Fre-
quency estimation of internet packet streams with limited space. In
European Symposium on Algorithms.

[10] Petros Drineas, Ravi Kannan, and Michael W Mahoney. 2006. Fast
Monte Carlo algorithms for matrices I: Approximating matrix multi-
plication. SIAM J. Comput. 36 (2006).

[11] Petros Drineas andMichaelWMahoney. [n. d.]. RandNLA: randomized
numerical linear algebra. Commun. ACM 59, 6 ([n. d.]).

[12] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
2007. Hyperloglog: the analysis of a near-optimal cardinality estima-
tion algorithm. In AofA: Analysis of Algorithms.

[13] I. Goiri, R. Bianchini, S. Nagarakatte, and T. Nguyen. 2015. Approx-
Hadoop: Bringing Approximations to MapReduce Frameworks (ASP-
LOS).

[14] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Find-
ing structure with randomness: Probabilistic algorithms for construct-
ing approximate matrix decompositions. SIAM review 53 (2011).

[15] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012.
Simple and Practical Algorithm for Sparse Fourier Transform. In Pro-
ceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’12).

[16] Sasa Misailovic Keyur Joshi, Vimuth Fernando. 2019. Statistical Algo-
rithmic Profiling for Randomized Approximate Programs. In ICSE.

[17] Michael A. Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke,
Jason Mars, and Lingjia Tang. 2016. Input Responsiveness: Using
Canary Inputs to Dynamically Steer Approximation. In PLDI.

[18] Jayadev Misra and David Gries. 1982. Finding repeated elements.
Science of computer programming 2 (1982).

[19] Hagit Shatkay and Stanley B Zdonik. 1996. Approximate queries and
representations for large data sequences. In ICDE.

[20] Joel Tropp. 2015. An introduction to matrix concentration inequalities.
Foundations and Trends in Machine Learning 8 (2015).

[21] Jeffrey S. Vitter. 1985. Random Sampling with a Reservoir. ACM Trans.
Math. Softw. 11 (1985).

[22] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Mi-
sailovic, and Saurabh Bagchi. 2018. Videochef: efficient approximation
for streaming video processing pipelines. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18). 43–56.

[23] Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, and Carlo Zaniolo. 2014.
ABS: a system for scalable approximate queries with accuracy guaran-
tees. In SIGMOD.

3


	Abstract
	1 Introduction
	2 Example: CountMin Sketch
	3 Challenges and Future Directions
	References

