
Verifying Safety and Accuracy of Approximate
Parallel Programs via Canonical Sequentialization

Vimuth Fernando, Keyur Joshi, Sasa Misailovic

University of Illinois at Urbana-Champaign

CCF-1629431
CCF-1703637
CCF-1846354

Compression

Compression

Skip communication

Compression

Skip communication

Low energy
(noisy)

How safe is the program?
Approximate program should not crash, get stuck, or
produce unacceptable results

How accurate are the results?

Approximate program should produce results with acceptable
accuracy/ reliability

• Types – Non-interference of approximate and
precise data [Sampson et al. 2011]

• Relative safety - Transfer reasoning about
original program to approximate programs
[Carbin et al. 2012]

• Reliability - probability of getting the correct
result [Carbin et al. 2013]

• Accuracy – combines reliability with distance
from correct result
[Misailovic et al. 2014]

Safety after approximations

Accuracy after approximations

How do we proceed?

• Completely new versions of
all analyses?

• Types – Non-interference of approximate and
precise data [Sampson et al. 2011]

• Relative safety - Transfer reasoning about
original program to approximate programs
[Carbin et al. 2012]

• Reliability - probability of getting the correct
result [Carbin et al. 2013]

• Accuracy – combines reliability with distance
from correct result
[Misailovic et al. 2014]

Existing
Sequential

Analysis

Approximate Parallel
Program

…

Canonical Sequentialization

Approximate Parallel
Program

Approximate Sequential
Program

Existing
Sequential

Analysis

Existing
Sequential

Analysis

Approximate Parallel
Program

Approximate Sequential
Program

How do we express parallel
approximations?

How to enforce and verify
safety/accuracy properties?

Under what conditions will the
existing analyses apply?

Parallely!
Language with support for modeling parallel approximations

• Software-level approximation

• Environment-level noise

Verification of safety and accuracy using canonical sequentialization

• Type-safety (Non-Interference)

• Deadlock-freeness

• Relative safety

• Reliability

• Accuracy

• And more

Programs in Parallely

Asynchronous distributed message passing processes

Two types of data : precise and approx.

Communicates through typed channels

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||

Programs in Parallely

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||

Programs in Parallely

Two processes

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||

Programs in Parallely

Parallel

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||

Programs in Parallely

ෑ𝑞:𝑄:

a = receive(0, precise int)

send(0, precise int, result)

result = computation(a)

for q in Q:

send(q, precise int, input)

0:

for q in Q:

out[q] = receive(q, precise int)

||

Symmetric Process Groups
Group of processes

Iteration over a group of processes

Symmetric Non-determinism

All receive statements have a unique
matching send statement

[Bakst et al. OOPSLA 2017]

ෑ𝑞:𝑄:

a = receive(0, precise int)

send(0, precise int, result)

result = computation(a)

for q in Q:

send(q, precise int, input)

0:

for q in Q:

out[q] = receive(q, precise int)

||

Map-Reduce Pattern

Communication Patterns easily expressible in
Parallely

Scatter/GatherMap Reduce Stencil

Scan Partition

Covers all the patterns in [M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. 2014. Paraprox: Pattern-based
Approximation for Data Parallel Applications. In ASPLOS. ​]

Approximation Primitives– Probabilistic Choice

input = val [p] randVal()

p 1 - p

input val input randVal()

Approximation Primitives– Probabilistic Choice

• Low energy channels that may corrupt the data being transmitted

send(1, approx int, input)
0: || 1 : a = receive(0, approx int)

input = val [p] randVal()

input = val [p] randVal()

Approximation Primitives- Precision Conversion

• Casting to reducing the precision of data that has primitive numeric
types

• Communicate in low precision

send(1, approx float32, sVal)
0: || 1 :

tmp = receive(0, approx float32)sVal = (approx float32) val

a = (approx float64) tmp

sVal = (approx float32) val

Approximation Primitives – Conditional Communication

0: cond-send(condition, 1, approx int, data)

1: flag, a = cond-receive(0, approx int)

condition = True condition = False

flag True
a data

flag False
a a

Approximation Primitives – Conditional Communication

• Skip sending some data

cond-send(skip, 1, approx int, data)
0: || 1 : flag, a = cond-receive(0, approx int)

skip = 1 [0.99] 0

0: cond-send(condition, 1, approx int, data)

1: flag, a = cond-receive(0, approx int)

What approximations can be modelled with
Parallely

• Failing tasks – probabilistic-choice + conditional communication

• Noisy channel – probabilistic-choice

• Precision reduction – casting

• Memoization – probabilistic-choice + conditional communication

• Approximate reduce – probabilistic-choice + conditional communication

• Loop perforation – probabilistic-choice

Canonical Sequentialization

Approximate Parallel
Program

Approximate Sequential
Program

Existing
Sequential

Analysis

How do we analyze Parallely programs?

Canonical Sequentialization (Bakst et al. OOPSLA 2017)

Generate an equivalent sequential program using rewriting

Probabilistic choice
x = y [p] z

Casting
x = (float32) y

Conditional Communication
cond-send(b, tid, type, val)

Works for programs with symmetric nondeterminism

We show how sequentialization works for

𝑃0 𝑃1

Parallel program

Sequentialization through rewrites

|| seq 𝑃1||; 𝑃0

Sequential prefix

Remaining parallel program

𝑃0

Parallel program

Sequentialization through rewrites

|| seq ||;

||;;

𝑃1

𝑃1

𝑃0

𝑃0

𝑃1

𝑃0

Parallel program

Sequentialization through rewrites

|| seq
𝑃0

𝑃1||;

||;;; ;; *
𝑃0

𝑃1

𝑃1

Generating a Canonical Sequentialization

send(1, precise int, input)0: || 1 :

a = receive(0, precise int)

a = input

cond-send(cond, 0, precise int, result)

pass, out = cond-receive(1, precise int)

result = computation(a)

result = computation(a)

out = cond ? result : out

cond = 1 [0.99] 0

cond = 1 [0.99] 0

pass = cond

input = readData()

input = readData()

1 2

Parallel program

Rewrite Soundness – Intuition

||𝑃0 𝑃1

S

||

𝑃0 𝑃1

Parallel program

S

Rewrite Soundness – Intuition

||
*

State

𝑃0 𝑃1

Parallel program

S

Rewrite Soundness – Intuition

||
*

*

State

State’

𝑃0 𝑃1

Parallel program

S

Rewrite Soundness – Intuition

For halted
processes

||
*

*

State

State’

• Set of type rules that block explicit and implicit flows in each
individual process

Non-Interference

approx precise

precise approx

0: send(1, approx int, result) 1 : out = receive(0, precise int)||

• Typed channels and sequentialization detects illegal flows across
process boundaries

𝑃0 𝑃1

Parallel program

Relative Safety

|| 𝑃0
𝐴 𝑃1

𝐴||

Approximate Parallel program

If the original program satisfies a property, then the transformed
program also satisfies that property

𝑃0 𝑃1

Parallel program

𝑆

Relative Safety

|| 𝑃0
𝐴 𝑃1

𝐴

𝑆𝐴

||

Approximate Parallel program

We can use the sequentialized programs to prove relative safety for
process local safety property

There is a canonical
sequentialization

Non-interference

Program type checks No Deadlocks

Relative safety

(Bakst et al. OOPSLA 2017)

Reliability/Accuracy analysis

Reliability – Probability that an approximate execution produces the
same result as an exact one

Accuracy – Probability that an approximate execution produces a
result close to an exact one

Reliability/Accuracy analysis

1 2

Parallel program

S

||

Sequential
Analysis

Reliability/Accuracy analysis

1 2

Parallel program

S

||

Sequential
Analysis

Rewrite Equivalence

p

p

𝑃0 𝑃1

Parallel program

S

||

Final
State

𝑃0 𝑃1

Parallel program

S

Rewrite Soundness

For halted
processes

||
*

*

Final
State

Final
State’

Rewrite Equivalence

For halted
processes

*

*

𝑃0 𝑃1

Parallel program

S

||
Final
State

Final
State’

Rewrite Equivalence

For halted
processes

p

p *

*
𝑃0 𝑃1

Parallel program

S

||
Final
State

Final
State’

Rewrite Equivalence

p

p

𝑃0 𝑃1

Parallel program

S

||

Final
State*

*

input = readData()

a = input

result = computation(a)

out = pass? result : out

cond = 1 [0.9999] 0

pass = cond

Reliability Analysis (Rely – Carbin et al. 2013)

input = readData()

Reliability Analysis

send(1, precise int, input)0: || 1 :

a = receive(0, precise int)

a = input

cond-send(cond, 0, precise int, result)

pass, out = cond-receive(1, precise int)

result = computation(a)

result = computation(a)

out = pass? result : out

cond = 1 [p] 0

cond = 1 [0.9999] 0

pass = cond

input = readData()

There is a canonical
sequentialization

Non-interference
Program type checks

Reliability and accuracy
analysis on the sequential

program valid on the parallel

No Deadlocks

Relative safety

Evaluation - Benchmarks

Benchmark Parallel Pattern Approximation

PageRank Map Failing Tasks

Scale Map Failing Tasks

Blackscholes Map Noisy Channel

SSSP Scatter-Gather Noisy Channel

BFS Scatter-Gather Noisy Channel

SOR Stencil Precision Reduction

Motion Map/Reduce Approximate Reduce

Sobel Stencil Precision Reduction

Benchmarks – Verification Time

Benchmark Approximation Property

Time

Type + Seq Rel / Acc

PageRank Failing Tasks Safety + Reliability (0.99) 1.8s 168s

Scale Failing Tasks Safety + Reliability (0.99) 6.5s 7.4s

Blackscholes Noisy Channel Safety + Reliability (0.99) 0.2s 12s

SSSP Noisy Channel Safety + Reliability (0.99) 9.6s 9.6s

BFS Noisy Channel Safety + Reliability (0.99) 8.9s 9.2s

SOR Precision Reduction Safety + Accuracy bound (10-6) 8.3s 53s

Motion Approx Reduce Safety 3.9s -

Sobel Precision Reduction Safety + Accuracy bound (10-6) 0.2s 72s

Also in the paper

• Evaluation of the benefits of approximations

• Type System and Proof for non-interference

• Soundness Proofs for reliability and accuracy analysis

New Directions

• Generalizing to verification of other properties – fairness

• Dynamic analysis – proving correctness of runtime systems

• Other parallel models – shared memory, etc

Takeaways

• Parallely is a language that can express many common approximation
patterns through three simple approximation primitives

• Parallely leverages canonical sequentialization to extend many
existing and future analyses from sequential to parallel programs

• Efficiently verifies safety and accuracy of 8 kernels and 8 popular
approximate computing benchmarks

