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How safe is the program?
Approximate program should not crash, get stuck, or 
produce unacceptable results

How accurate are the results?

Approximate program should produce results with acceptable 
accuracy/ reliability



• Types – Non-interference of approximate and 
precise data [Sampson et al. 2011]

• Relative safety - Transfer reasoning about 
original program to approximate programs 
[Carbin et al. 2012]

• Reliability - probability of getting the correct 
result [Carbin et al. 2013]

• Accuracy – combines reliability with distance 
from correct result
[Misailovic et al. 2014]

Safety after approximations

Accuracy after approximations









How do we proceed?

• Completely new versions of 
all analyses?

• Types – Non-interference of approximate and 
precise data [Sampson et al. 2011]

• Relative safety - Transfer reasoning about 
original program to approximate programs 
[Carbin et al. 2012]

• Reliability - probability of getting the correct 
result [Carbin et al. 2013]

• Accuracy – combines reliability with distance 
from correct result
[Misailovic et al. 2014]
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How do we express parallel 
approximations?

How to enforce and verify 
safety/accuracy properties?

Under what conditions will the 
existing analyses apply?



Parallely!
Language with support for modeling parallel approximations

• Software-level approximation

• Environment-level noise

Verification of safety and accuracy using canonical sequentialization

• Type-safety (Non-Interference)

• Deadlock-freeness

• Relative safety

• Reliability

• Accuracy

• And more



Programs in Parallely

Asynchronous distributed message passing processes

Two types of data : precise and approx.

Communicates through typed channels

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||



Programs in Parallely

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||



Programs in Parallely

Two processes

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||



Programs in Parallely

Parallel

send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||



send(1, precise int, input)
0:

out = receive(1, approx int)
1 :

a = receive(0, precise int)

send(0, approx int, result)

result = computation(a)||

Programs in Parallely



ෑ𝑞:𝑄:

a = receive(0, precise int)

send(0, precise int, result)

result = computation(a)

for q in Q:

send(q, precise int, input)

0:

for q in Q:

out[q] = receive(q, precise int)

||

Symmetric Process Groups
Group of processes

Iteration over a group of processes



Symmetric Non-determinism

All receive statements have a unique 
matching send statement

[Bakst et al. OOPSLA 2017]



ෑ𝑞:𝑄:

a = receive(0, precise int)

send(0, precise int, result)

result = computation(a)

for q in Q:

send(q, precise int, input)

0:

for q in Q:

out[q] = receive(q, precise int)

||

Map-Reduce Pattern



Communication Patterns easily expressible in 
Parallely

Scatter/GatherMap Reduce Stencil

Scan Partition

Covers all the patterns in [M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. 2014. Paraprox: Pattern-based 
Approximation for Data Parallel Applications. In ASPLOS. ​]



Approximation Primitives– Probabilistic Choice

input = val [p] randVal()

p 1 - p

input          val input          randVal()



Approximation Primitives– Probabilistic Choice

• Low energy channels that may corrupt the data being transmitted

send(1, approx int, input)
0: ||  1 : a = receive(0, approx int)

input = val [p] randVal()

input = val [p] randVal()



Approximation Primitives- Precision Conversion

• Casting to reducing the precision of data that has primitive numeric 
types

• Communicate in low precision 

send(1, approx float32, sVal)
0: ||  1 :

tmp = receive(0, approx float32)sVal = (approx float32) val

a = (approx float64) tmp

sVal = (approx float32) val



Approximation Primitives – Conditional Communication

0: cond-send(condition, 1, approx int, data)

1: flag, a = cond-receive(0, approx int)

condition = True condition = False

flag            True
a            data 

flag            False
a             a



Approximation Primitives – Conditional Communication

• Skip sending some data

cond-send(skip, 1, approx int, data)
0: || 1 : flag, a = cond-receive(0, approx int)

skip = 1 [0.99] 0

0: cond-send(condition, 1, approx int, data)

1: flag, a = cond-receive(0, approx int)



What approximations can be modelled with 
Parallely

• Failing tasks – probabilistic-choice + conditional communication

• Noisy channel – probabilistic-choice

• Precision reduction – casting 

• Memoization – probabilistic-choice + conditional communication

• Approximate reduce – probabilistic-choice + conditional communication

• Loop perforation – probabilistic-choice



Canonical Sequentialization

Approximate Parallel
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Existing 
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Analysis

How do we analyze Parallely programs?



Canonical Sequentialization (Bakst et al. OOPSLA 2017)

Generate an equivalent sequential program using rewriting 

Probabilistic choice
x = y  [p] z  

Casting
x = (float32) y  

Conditional Communication
cond-send(b, tid, type, val)

Works for programs with symmetric nondeterminism

We show how sequentialization works for



𝑃0 𝑃1

Parallel program

Sequentialization through rewrites

|| seq 𝑃1||; 𝑃0

Sequential prefix

Remaining parallel program



𝑃0

Parallel program

Sequentialization through rewrites

|| seq ||;

||;;

𝑃1

𝑃1

𝑃0

𝑃0

𝑃1



𝑃0

Parallel program

Sequentialization through rewrites

|| seq
𝑃0

𝑃1||;

||;;; ;; *
𝑃0

𝑃1

𝑃1



Generating a Canonical Sequentialization

send(1, precise int, input)0: || 1 :

a = receive(0, precise int)

a = input

cond-send(cond, 0, precise int, result)

pass, out = cond-receive(1, precise int)

result = computation(a)

result = computation(a)

out = cond ? result : out

cond = 1 [0.99] 0

cond = 1 [0.99] 0

pass = cond

input = readData()

input = readData()



1 2

Parallel program

Rewrite Soundness – Intuition 

||𝑃0 𝑃1

S

||



𝑃0 𝑃1

Parallel program

S

Rewrite Soundness – Intuition 

||
*

State
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𝑃0 𝑃1

Parallel program

S

Rewrite Soundness – Intuition 

For halted 
processes

||
*

*

State

State’



• Set of type rules that block explicit and implicit flows in each 
individual process

Non-Interference

approx precise

precise approx

0: send(1, approx int, result) 1 : out = receive(0, precise int)||

• Typed channels and sequentialization detects illegal flows across  
process boundaries



𝑃0 𝑃1

Parallel program

Relative Safety

|| 𝑃0
𝐴 𝑃1

𝐴||

Approximate Parallel program

If the original program satisfies a property, then the transformed 
program also satisfies that property



𝑃0 𝑃1

Parallel program

𝑆

Relative Safety

|| 𝑃0
𝐴 𝑃1

𝐴

𝑆𝐴

||

Approximate Parallel program

We can use the sequentialized programs to prove relative safety for 
process local safety property



There is a canonical 
sequentialization

Non-interference

Program type checks No Deadlocks

Relative safety

(Bakst et al. OOPSLA 2017)



Reliability/Accuracy analysis

Reliability – Probability that an approximate execution produces the 
same result as an exact one

Accuracy – Probability that an approximate execution produces a 
result close to an exact one



Reliability/Accuracy analysis

1 2

Parallel program

S

||

Sequential 
Analysis



Reliability/Accuracy analysis

1 2

Parallel program

S

||

Sequential 
Analysis



Rewrite Equivalence
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𝑃0 𝑃1

Parallel program
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Final
State



𝑃0 𝑃1

Parallel program

S

Rewrite Soundness

For halted 
processes

||
*

*
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Rewrite Equivalence

For halted 
processes
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Rewrite Equivalence
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Rewrite Equivalence

p

p

𝑃0 𝑃1

Parallel program

S

||

Final
State*

*



input = readData()

a = input

result = computation(a)

out = pass? result : out

cond = 1 [0.9999] 0

pass = cond

Reliability Analysis (Rely – Carbin et al. 2013)



input = readData()

Reliability Analysis

send(1, precise int, input)0: || 1 :

a = receive(0, precise int)

a = input

cond-send(cond, 0, precise int, result)

pass, out = cond-receive(1, precise int)

result = computation(a)

result = computation(a)

out = pass? result : out

cond = 1 [p] 0

cond = 1 [0.9999] 0

pass = cond

input = readData()



There is a canonical 
sequentialization

Non-interference
Program type checks

Reliability and accuracy 
analysis on the sequential 

program valid on the parallel

No Deadlocks

Relative safety



Evaluation - Benchmarks

Benchmark Parallel Pattern Approximation

PageRank Map Failing Tasks

Scale Map Failing Tasks

Blackscholes Map Noisy Channel

SSSP Scatter-Gather Noisy Channel

BFS Scatter-Gather Noisy Channel

SOR Stencil Precision Reduction

Motion Map/Reduce Approximate Reduce

Sobel Stencil Precision Reduction



Benchmarks – Verification Time

Benchmark Approximation Property

Time

Type + Seq Rel / Acc

PageRank Failing Tasks Safety + Reliability (0.99) 1.8s 168s

Scale Failing Tasks Safety + Reliability (0.99) 6.5s 7.4s

Blackscholes Noisy Channel Safety + Reliability (0.99) 0.2s 12s

SSSP Noisy Channel Safety + Reliability (0.99) 9.6s 9.6s

BFS Noisy Channel Safety + Reliability (0.99) 8.9s 9.2s

SOR Precision Reduction Safety + Accuracy bound (10-6) 8.3s 53s

Motion Approx Reduce Safety 3.9s -

Sobel Precision Reduction Safety + Accuracy bound (10-6) 0.2s 72s



Also in the paper

• Evaluation of the benefits of approximations

• Type System and Proof for non-interference

• Soundness Proofs for reliability and accuracy analysis



New Directions

• Generalizing to verification of other properties – fairness

• Dynamic analysis – proving correctness of runtime systems

• Other parallel models – shared memory, etc



Takeaways

• Parallely is a language that can express many common approximation 
patterns through three simple approximation primitives

• Parallely leverages canonical sequentialization to extend many 
existing and future analyses from sequential to parallel programs

• Efficiently verifies safety and accuracy of 8 kernels and 8 popular 
approximate computing benchmarks


