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Abstract. Many application domains including graph analytics, the Internet-
of-Things, precision agriculture, and media processing operate on noisy data
and/or produce approximate results. These applications can distribute
computation across multiple (often resource-constrained) processing units.
Analyzing the reliability and accuracy of such applications is challenging,
since most existing techniques operate on specific fixed error models, check
for individual properties, or can only be applied to sequential programs.
We present Diamont, a system for dynamic monitoring of uncertainty prop-
erties in distributed programs. Diamont programs consist of distributed
processes that communicate via asynchronous message passing. Diamont in-
cludes datatypes that dynamically monitor uncertainty in data and provides
support for checking predicates over the monitored uncertainty at runtime.
We also present a general methodology for verifying the soundness of the
runtime system and optimizations using canonical sequentialization.
We implemented Diamont for a subset of the Go language and evaluated eight
programs from precision agriculture, graph analytics, and media processing.
We show that Diamont can prove important end-to-end properties on the
program outputs for significantly larger inputs compared to prior work, with
modest execution time overhead: 3% on average and 16.3% at maximum.

1 Introduction

Many emerging distributed applications operate on inherently noisy data or produce
approximate results [41]. Emerging edge applications, including autonomous robotics
and precision agriculture, routinely need to deal with noise from their sensors. Machine
learning applications regularly encounter datasets that contain a high degree of noise,
or other irregularity. Furthermore, the rise of highly-parallel and often heterogeneous
systems have brought forth new challenges in overcoming bottlenecks in computation
and communication between processing units. Many prominent systems adopted
approximation in communication, e.g., MapReduce’s task dropping [16], TensorFlow’s
precision reduction [43], or Hogwild’s synchronization-eschewing stochastic gradient
descent [31]. Also, researchers explored various non-conventional architectures and
networks-on-chip [7, 17,30,42].

To cope with different kinds of uncertainty, researchers developed several static and
run-time analyses that quantify the level of noise, reliability, or accuracy. We survey
the existing techniques in Section 7. These existing techniques suffer from one or more
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of the following problems: 1) they have been developed only for sequential programs,
2) they are either imprecise (static analyses) or lack guarantees on result quality
and soundness of monitoring code (empirical analyses), or 3) their applicability is
limited – a single analysis is defined exclusively for a specific source of uncertainty
(e.g., an unreliable instruction or a noisy sensor) and cannot be combined with others.
Directly extending and generalizing the existing frameworks to a distributed setting
can lead to subtle problems and/or run-time inefficiencies. An intriguing question
is how to design a general analysis framework that will overcome these challenges,
thus enabling a flexible and precise uncertainty analysis for parallel computations.

Our Work. We present Diamont, the first system for sound, precise and efficient
runtime monitoring of uncertainty in distributed applications. Diamont offers a flexible
runtime system for specifying and verifying uncertainty bounds in the face of various
sources of uncertainty. Diamont supports programs consisting of distributed processes
that communicate via asynchronous message-passing. Each process communicates
with the others using strongly-typed communication channels through the common
send and receive communication primitives. Diamont includes multiple language
constructs for dynamic monitoring:

– Dynamic types and data channels: The developer specifies the variables that
need to be dynamically monitored by annotating them using the dynamic type
qualifier. In addition, Diamont introduces dynamic channels that use specialized
communication primitives to reliably transfer the monitoring information.

– Runtime Monitoring of Uncertainty: Diamont maintains uncertain inter-
vals for dynamically monitored variables – these map variables to a maximum error
bound and a probability that the error is within the bound. Diamont propagates
this uncertainty through computations. It can precisely do so even for individual
array elements and unbounded loops – factors that usually reduce precision of
existing analyses like Parallely [19] and DECAF [6].

– Checkers: Diamont’s check statement evaluates logical predicates over the
program state and the monitored uncertainty to report violations. For example, the
check can verify whether the magnitude of a variable’s error is less than a developer-
defined threshold. Using Diamont’s checks, developers can decide if further
attention should be given to the results. If the uncertainty of a result is acceptable
at runtime, developers can avoid costly error checking and correction mechanisms.

We implemented Diamont for a distributed fragment of the Go language, extended
with the dynamic type and check statements. Diamont performs static analysis at the
level of an intermediate representation (IR) extracted from the Go code. It generates
instrumented Go code with dynamic monitoring implemented via a Go library.

Diamont also presents a set of optimizations to reduce the runtime overhead
arising from the monitoring of uncertain intervals throughout and across processes.
These optimizations include: 1) combining static analysis with dynamic monitoring
2) approximating dynamically monitored uncertainty of arrays, 3) moving check
statements across processes, and 4) using compiler techniques such as constant prop-
agation and dead-code elimination. These optimizations give Diamont a significant
advantage over direct extensions of systems like Decaf [6] or AffineFloat [13] to
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parallel programs. However, developers who try to manually implement such run-time
system optimizations that span multiple processes can easily make subtle errors.

Verified Runtime and Optimizations. We prove the soundness of the Diamont
runtime and optimizations. Soundness of a Diamont program means that if the
execution passes a variable uncertainty check, then the uncertainty of the variable
is within the bound specified in the check statement. An optimization is sound if
all check failures in a program are also guaranteed to occur in its optimized version.

Diamont’s runtime system is sound for programs that satisfy the symmetric non-
determinism property [3] – i.e., each receive statement must have a unique matching
send statement, or a set of symmetric matching send statements. Many common
parallel patterns in data analytics applications [19, 34] satisfy this property. We use
canonical sequentialization [3, 19], which rewrites a symmetrically nondeterministic
parallel program to an equivalent sequential program. We can then prove soundness
of runtime monitoring on the sequentialized program. Lastly, we show that this
soundness proof also applies to the original parallel program.

Through sequentialization, Diamont can also automatically verify type safety and
the absence of deadlocks of programs caused by approximations, the runtime system,
or optimizations that change communication patterns.

Results. We applied Diamont on eight parallel applications. These real-world
applications come from the domains of graph analytics, precision agriculture, and
media processing. We modeled four sources of uncertainty: noisy communication,
precision reduction (compression), noisy inputs, and timing errors.

We showed that Diamont can verify important end-to-end properties for all applica-
tions. In particular, we looked at four error probability predicates of end results, three
error magnitude predicates, and one predicate on both error probability and magni-
tude. These properties cannot be validated by existing static techniques [10, 19, 26].

Our optimizations reduced the runtime overhead of Diamont with respect to the
unmonitored program. Directly extending existing sequential runtime analyses to
parallel settings leads to overheads between 30-80%. Our optimizations reduced the
overhead to a geomean of 3% and maximum of 16.3% while satisfying strict predicates.
We show that these overheads remain low and the communication of monitoring
data is minimized even when the input size increases, especially for applications that
implement intensive communication. These results demonstrate that even in the face
of both uncertainty and significant parallelism, runtime monitoring is still practical.

Contributions. The paper makes several contributions:

– Diamont. Diamont is a system for dynamically monitoring uncertainty prop-
erties in strongly-typed, message-passing, asynchronous programs. We show that
Diamont can soundly monitor uncertainty (error probability and magnitude).

– Optimizations for reducing overhead. We present several optimizations
that reduce the overhead of performing runtime monitoring across processes.

– Implementation. We implement Diamont’s analysis and runtime system with
optimizations for a subset of Go.

– Evaluation. We evaluate Diamont on 8 benchmarks. We show that Diamont can
verify important correctness properties with small runtime overheads.
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1 var Q [NUMSENSORS] process; var R [NUMWORKERS] process

2 type point struct {/*@dynamic*/ temperature, humidity float64 }

3
4 func Manager { // declarations & setup skiped to preserve space

5 for i, IoTDevice := range(Q) { data[i] = receive(IoTDevice) }

6 centers = // randomly pick some nodes

7 for i, Worker := range(R) { send(Worker, data) }

8 for j:=0; j<ITERATIONS; j++ {

9 for _, Worker := range(R) { send(Worker, centers) }

10 for i, Worker := range(R) { newcenters[i] = receive(Worker) }

11 centers = AverageOverThreads(newcenters)

12 }

13 checkArr(centers, 1, 0.99, 4, 0.99)

14 }

15
16 func IoTDevice {

17 /*@dynamic*/ var temperature, humidity float64

18 tempVal, tempErr, tempConf := readTemperature()

19 humidVal, humidErr, humidConf := readHumidity()

20 temperature = track(tempVal, tempErr, tempConf)

21 humidity = track(humidVal, humidErr, humidConf)

22 send(Manager, point{temperature, humidity})

23 }

24
25 func Worker {

26 var data [NUMSENSORS] point

27 var centers, newcenters [NUMCENTERS] point

28 /*@dynamic*/ var assign [PERTHREAD] int

29 data = receive(Manager)

30 for iter:=0; iter<ITERATIONS; iter++ {

31 centers = receive(Manager)

32 newcenters = kmeansKernel(data, centers, assign)

33 send(Manager, newcenters)

34 } }

Fig. 1: K-means Algorithm in a Smart Agriculture Setup in the Go Language

2 Example

We consider a scenario from precision agriculture [20]. Multiple low-power embed-
ded systems with sensors are distributed across a field to monitor changes in the
environment. Each embedded system (e.g., Raspberry Pis) can read the tempera-
ture, humidity, or other properties using their sensors. It can perform limited local
processing of the readings, and periodically sends those results to a server for further
(typically more expensive) analysis.

Figure 1 shows an implementation of the application in Go. The program has
multiple parallel processes that communicate over typed channels using the Diamont
API using matched send and receive statements (E.g., Lines 5, 22). The Manager
process coordinates the computation.

The process group Q is of a set of processes running on embedded systems
IoTDevice1,...,NUMSENSORS that read sensor values and communicate the data to
the Manager. Each IoTDevice gathers and stores datapoints using the struct point
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from Line 2. The /*@dynamic*/ annotation indicates that the fields of point are of
dynamic type. Diamont monitors the uncertainty of dynamic variables at runtime.

The Manager process first gathers sensor data (Line 5) from each IoTDevice.
Then it performs a distributed k-means clustering analysis using the processes in
the group R. The Manager picks a set of random points as the initial cluster centers
(Line 6). Next, over ITERATIONS iterations, it updates the cluster centers (Lines 8-12).

Each Worker process from the group R processes a subset of the data points to
calculate new cluster centers (Lines 30-33) for that subset. The Manager combines
the partial results from each Worker and redistributes them (Line 11).

2.1 Sources of Uncertainty

Approximate sensors. Sensors are often noisy (e.g., the AM2302-DH22 relative
humidity and temperature sensor has an error range of ±0.5◦F for temperature and
±2%RH for humidity reading [24]). Each process in Q calculates the error of its
sensors while reading the value at Lines 18 and 19. This error calculation can come
from the sensor specification (e.g. [24]). Next, Lines 20 and 21 initialize dynamic

variables using the sensor value and error.

Approximate Communication. We also consider the impact of communication
over noisy channels (Line 7, 29), prevalent in situations where sensors are deployed
in remote areas (E.g., [45]). Messages in such channels can be corrupted with a
small probability [29]. Instead of implementing costly error correction mechanisms,
a developer may choose to deal with potentially incorrect data to save resources.

An uncertainty model ψ provides parameters such as the probability of message
corruption. For example, ψ(Manager,Worker,dynamic float<64>)=1−10−7 indi-
cates that the probability of corruption of a dynamic float<64> type message from
Manager to Worker is 10−7. The specification is modeled after the ones from [5,10,37].

2.2 Verification

Properties. We wish to verify that the final values of centers are close to the true
cluster centers with high probability. We encode this requirement in the checkArr
statement in Line 13. This check specifies a maximum error magnitude and probability
for each dynamic field in the struct. This program has features that make static
verification using tools such as Parallely [19] challenging:

– The error specification of the sensors may not be known a priori. Additionally,
prior static verification techniques require worst-case bounds for the number of
loop iterations and the number of processes. Using worst-case estimates for these
in a static analysis will invalidate many correct programs.

– Parallely treats entire arrays as single variables, and thus array analysis accumu-
lates errors even across two different array locations. Consequently, the conservative
static estimate of uncertain intervals quickly expands to unusable levels for any
sufficiently large number of sensors for our example.
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Fig. 2: Diamont Workflow

Workflow. Diamont combines static and dynamic analyses to verify safety and
accuracy properties at runtime. Figure 2 shows the workflow for generating an
instrumented program in Diamont. Given a Go program, Diamont 1) translates
it to Diamont-IR, 2) sequentializes the program to statically verify type safety,
deadlock-freeness, and the applicability of the runtime analysis, and 3) produces an
instrumented version of the original Go program with an uncertainty map for each
process. The sequentialized version of the code in Figure 1 is in Appendix F [18].

The uncertainty map of a process maintains a conservative uncertain interval for
each dynamic local variable. Uncertain intervals are stored as pairs 〈d,r〉 indicating
that the maximum error of the associated variable is ≤d with probability ≥r. The
default uncertain interval is 〈0,1〉 (no error with 100% confidence). Developers can
use track statements (E.g., Line 20) to use external error specifications within
Diamont. When a dynamic variable is updated, Diamont also updates the uncertain
interval. Diamont’s instrumentation 1) initializes the uncertain interval of the data
in IoTDevice, 2) communicates the uncertain interval across process boundaries,
3) propagates this uncertainty through computations, and 4) checks the uncertain
interval of the array at the end of the program against a developer-specified bound.

We verified this system for a setting with 128 sensors and a set of 8 workers
performing the k-means computation over 10 iterations. As more and more compu-
tations containing unreliable values affect the centers array, the uncertain interval
of individual elements widens. However, the specification is still satisfied.

Overhead. Diamont’s instrumentation adds runtime overhead. To reduce overhead,
Diamont applies optimizations such as constant propagation, dead code elimination,
and simplification of monitoring uncertainty in arrays. To reduce overhead when trans-
mitting arrays, Diamont transmits the maximum uncertainty among the elements of
the array as the uncertainty of every element of the array. This allows Diamont to only
communicate one uncertain interval across processes, while maintaining high analysis
precision in other parts of the program. These optimizations reduce Diamont’s over-
head from 42% to 3.2%. Increasing the number of sensors does not significantly increase
overhead (Section 6.3). Even for 2-8x larger data, the overhead remains below 5%.

3 Diamont System

Diamont takes as input a Go program and an uncertainty model. Diamont first converts
the program to the Diamont-IR and verifies important safety properties necessary to
ensure that the runtime system will be sound. Finally, Diamont generates instrumented
Go code. The full syntax and semantics of Diamont are available in Appendix A [18].
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m, v ∈ N∪F∪{∅} values
Exp → m | 〈m,v〉 | x expressions

| Exp op Exp
AEx → d | d·x | d·a[Exp+] affine

| AEx ±AEx expressions

q → precise |approx type
|dynamic qualifiers

t → int<n> |float<n> basic types
T → q t |q t [] |struct T+ types
P → [S]α process

| Π.α :X [S]α process group
| P‖P parallel comp

S → T x | T a[n+] declarations
| x = Exp assignment
| dyn-send(α,T ,x ) send dynamic
| x = dyn-recv(α,T ) receive dynamic
| x = rdDyn(y) read dynamic map
| x = endorse(y) cast to precise
| x = track(y, 〈d, r〉+) initiate monitoring
| x = Exp? Exp :Exp conditional choice
| check(AEx, 〈d, r〉+) check error
| checkArr(a, 〈d, r〉+) check array error

Fig. 3: Diamont-IR Syntax Extensions (full language contains conditionals, loops
and function calls)

3.1 Syntax

Go Language. Diamont supports a subset of the Go Programming Language
(matching the features of Diamont-IR along with external functions that do not
perform communication) extended with an API for distributed communication and
annotations in comments for type qualifiers.

Diamont-IR. Diamont’s intermediate representation supports a strongly typed im-
perative language with primitives for asynchronous communication. Diamont extends
the syntax of Parallely [19] with support for the additional dynamic type. Figure 3
defines the subset of Diamont syntax dealing with dynamic data. Here, d refers to
reals, r to probabilities, n to positive integers, x,y to variables, and a to array variables.
The full syntax includes conditionals, loops, operations on arrays, and structs.

Types. Diamont’s type qualifiers explicitly split data into either precise (no
uncertainty), dynamic (uncertainty monitored at runtime), or approx (uncertain
but unmonitored). Diamont’s type system ensures that uncertainties in executions
do not cause errors in critical program sections and ensures that the dynamic
monitoring is sound by avoiding control flow divergence. Using type inference, Diamont
automatically annotates some variables as dynamic to reduce programmer burden.

Communication. Processes communicate by sending and receiving messages over
typed channels. For each pair of processes, Diamont provides a set of logical sub-
channels for communication, further split by message type (µ). A send statement
asynchronously sends a value to another process using a unique process identifier. The
receiving process uses the blocking receive statement to read the message. Diamont
supports communication of dynamic type data through dyn-send and dyn-recv

statements, which also send the monitored uncertainty using reliable channels.

Type conversion. To explicitly convert a variable to dynamic type, the developer
or compiler can use a track statement (x = track(y, 〈d, r〉)), which sets the uncertain
interval to 〈d, r〉. track statements can be used to initiate monitoring for variables
updated by external functions, or to incorporate informal specifications (e.g., from a
datasheet) into Diamont. Similarly, the endorse statement (x = endorse(y)) converts
an approx or dynamic variable to a precise variable, usually after a user-defined



8 Vimuth Fernando, Keyur Joshi, Jacob Laurel, and Sasa Misailovic

S-Assign-Dyn
(x,.,.)∈D 〈e,σ,h〉

w�v
d=〈calc-eps(e,D), calc-del(e,D)〉

D
′
=D[x 7→d] 〈nb, 〈1〉〉=σ(x) h

′
=h[nb 7→v]

〈x = e,〈σ,h〉,µ,D〉 1−→ψ 〈skip,〈σ,h′〉,µ,D′〉

S-DynSend
µ[〈α,β,Dt〉]=md µ

′
=µ[〈α,β,Dt〉 7→md++D[y]]

〈[dyn-send(β,t,y)]α,〈σ,h〉,µ,D〉
1−→ψ 〈[send(β,t,y)]α,〈σ,h〉,µ

′
,D〉

S-DynReceive
µ[〈β,α,Dt〉]=d ::md µ

′
=µ[〈β,α,Dt〉 7→md] db=〈d.ε, d.δ×ψ(β,α,t)〉 D

′
=D[x 7→db]

〈[x = dyn-recv(β,t)]α,〈σ,h〉,µ,D〉
1−→ψ 〈[x = receive(β,t)]α,〈σ,h〉,µ

′
,D
′〉

S-Check-Fail
calc-eps(AEx,D)>d ∨ calc-del(AEx,D)<r

〈check(AEx , d, r),〈σ,h〉,µ,D〉 1−→ψ 〈skip,⊥,µ,D〉

S-Cast
〈n′b, 〈1〉〉=σ(y) h[n

′
b]=m m

′
=cast(T,m)

〈nb, 〈1〉〉=σ(x) h
′
=h[nb 7→m

′
]

d=〈cast-eps(x,y,D), D[y].δ〉 D
′
=D[x 7→d]

〈x = (dynamic T)y,〈σ,h′〉,µ,D′〉
1−→ψ 〈skip,〈σ,h′〉,µ,D′〉

Fig. 4: Semantics of Dynamic Monitoring (Selection)

check (similar to EnerJ [37]). The rdDyn intrinsic (rdDyn(x)) can be used to read
the monitored uncertainty of a dynamic variable.

Uncertainty Model (ψ). It specifies the reliability/accuracy of program compo-
nents (e.g., the probability of message corruption or the probability that a sensor fails).

Specifications. Diamont exposes the following statements to check specifications
of dynamically monitored variables.

– check(AEx, 〈d, r〉): It checks if an affine expression AEx has a maximum error ≤d
with probability ≥r. If the specification is not satisfied, the check fails.

– checkArr(a, 〈d, r〉): It checks if the dynamically monitored uncertainty for each
element in array a satisfies the specification.

While this version of Diamont stops the execution if a check fails, it can be extended
to trigger a recovery mechanism instead [1, 15, 22]. Aloe [22] represents recoverable
computations with blocks of the form try {...} check (...) recover {...}.
Using this construct, Diamont can recover the execution if a check fails, and calculate
the effect of (possibly imperfect) checks and recovery mechanisms on uncertainty. For-
malization of recovery for distributed programs, however, is out of scope of this paper.

Structs. The programmer can specify the uncertainty of each field of a struct in
a track statement by using multiple 〈d, r〉 pairs. The programmer can check each
field of a struct in check and checkArr statements in a similar manner.

3.2 Diamont Semantics

Semantics for precise and approx data in Diamont are the same as those from
Parallely [19]. For dynamic data, the compiler adds instructions to monitor their
uncertain intervals alongside the original program instructions.

References, Frames, Stacks, and Heaps. A reference is a pair 〈nb,〈n1,...,nk〉〉∈
Ref that contains a base address nb∈Loc and dimension descriptor 〈n1,...,nk〉 denot-
ing the location and dimension of variables in the heap. A frame σ∈E=Var→Ref
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calc-eps(e,D)=



0 e is a constant

D[x].ε e is a variable x

D[x].ε+D[y].ε e is x ± y

|x|×D[y].ε+|y|×D[x].ε+D[x].ε×D[y].ε e is x × y

∞ e is x ÷ y ∧ 0∈ [y±D[y].ε]
(|x|×D[y].ε+|y|×D[x].ε)

(|y|×(|y|−D[y].ε))
e is x ÷ y ∧ 0 6∈ [y±D[y].ε]

calc-del(e,D) = max(0,(Σx∈ρ(e)D[x].δ)−(|ρ(e)|−1))

cast-eps(x,v,D) = max(max(x+D[x].ε,v+D[x].ε)−v,v−min(x−D[x].ε,v−D[x].ε)))

Fig. 5: Runtime for Dynamic Monitoring of Uncertainty

maps program variables to references. A heap h∈H=N→N∪F∪{∅} is a finite map
from addresses to values (Integers, Floats or the special empty message [∅]). Each
process i maintains its own private environment consisting of a frame and a heap
〈σi,hi〉∈Λ={H×E}∪⊥, where ⊥ is considered to be an error state.

Uncertainty Map. For each process, Diamont defines an uncertainty map (D)
to attach each variable with a uncertain interval, consisting of a maximum absolute
error (ε), and a probability/confidence (δ) that the true error is below ε.

Local Semantics. The small-step relation 〈s,〈σ,h〉,µ,D〉 p−→ψ 〈s′,〈σ′,h′〉,µ′,D′〉
defines a process in the program evaluating in its local frame σ, heap h, uncertainty
map D, and the global channel set µ. Figure 4 presents a selection of the semantics.

– Initialization: Each dynamic variable is initialized by setting the maximum
error ε to 0 and the confidence δ to 1.

– Expressions: The S-Assign-Dyn rule in Figure 4 is applied when a dynamic

variable is updated by assigning it an expression e. We use a big-step evaluation

relation of the form 〈e,σ,h〉
w�v to compute the result of the expression. Diamont

supports typical integer and floating point operations.
For dynamic variables, in addition to the assigned variable, Diamont updates its
interval using the uncertain interval arithmetic defined in Figure 5. The calc-eps
function is used to calculate an expression’s maximum error. The confidence in this
maximum error is then computed using calc-del (ρ(e) returns the list of variables
used in an expression e.) To avoid any assumptions about the independence of the un-
certainties (prior approaches such as [6] restrictively assumed all the operations and
probability of failures are independent) Diamont uses the conservative union bound.

– Communication: When sending dynamic variables of type T to another process
(rule S-DynSend), Diamont uses special channels (DT ) that are assumed to be fully
reliable to communicate the relevant uncertain intervals before sending the data.1

At the receiver (rule S-DynReceive), Diamont updates the local uncertainty map.
Diamont assumes the channel failure rate is independent of the message content and
reduces the confidence based on the failure rate defined in the Uncertainty Model.

1 ++ denotes adding a element to the end of the message queue.
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– Precision Manipulation: Diamont monitors the errors introduced to programs
through cast statements that change the precision of values of the same general
type (int or float). In the rule S-Cast, the added error is calculated using the
cast-eps(x,v,D) function using the casted value v and the original variable x.
Confidence remains the same.

– Conditionals: For branching on dynamic values, Diamont supports an operator
x = cond? e1 :e2 (conditional choice) where cond compares a dynamic value
against a threshold. We check if the entire interval associated with the value
is greater or less than the threshold. If neither case is true, we compute both
expressions and the interval of x becomes the smallest closed interval that contains
all possible intervals.

– Checks: If a check fails, the Diamont program transitions into an error state (Fig-
ure 4 rule S-Check-Fail). To prevent such check failures, the user can implement
error recovery mechanisms.

Global Semantics. We define a global configuration as 〈ε,µ,ω,P 〉, consisting of
a global environment ε∈Env=Pid 7→Λ, a set of typed channels µ∈Channel=
Pid×Pid×Type→V al∗, global uncertainty map ω∈Pid 7→D, and the program

P . Small step transitions of the form (ε,ω,µ,P )
α,r−→ψ (ε′,ω′,µ′,P ′) define a process

α taking a step and thus changing the global configuration. Inter-process commu-
nication happens using the typed channels – though processes adding to and reading
from the relevant queue. Complete semantics are available in Appendix A.

3.3 Soundness of Runtime Monitoring

Diamont’s runtime system works across distributed processes. We use Canonical
Sequentialization [3] to simplify our reasoning about the soundness of the runtime
system. Canonical sequentialization uses the assumption that correct programs tend
to be well-structured to generate a sequential program that over-approximates the
semantics of a parallel program. If such a sequentialized program can be generated,
then the parallel program is deadlock-free, and local safety properties that hold for
the sequentialized program also hold for the parallel program.

To be sequentializable, the parallel program must be symmetrically nondetermin-
istic – each receive statement must only have a single matching send statement, or
a set of symmetric matching send statements2. We use a set of rewrite rules of the

form Γ,S,P Γ ′,S ′,P ′ to rewrite a parallel program P to a sequential program

S ′ step by step (the rules are available in Appendix C). The context Γ is used as
a symbolic set of messages in flight, and P ′ is the part of the parallel program that
remains to be rewritten. The sequentialization process applies the rewrite steps until
the entire program is rewritten to S ′. We extend the results from prior work [3, 19]
to show that rewrite rules maintain equivalent behavior between the original parallel
program and the generated sequential program, i.e., they both produce the same
environment and uncertainty map at the halting states of the programs.

2 Many popular parallel application patterns (e.g. Map, Reduce, Scatter-Gather, Stencil)
exhibit symmetric non-determinism [3,19]. Further, programs satisfying this property
can be less error-prone [3].
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S=[]

P=
int α.n = 1 [r] 0;
send(β, int, α.n);

[ ]
α

‖ int β.x;
β.x = receive(α, int);

[ ]
β

 ∗
S=

int α.n = 1 [r] 0;
int β.x;
β.x = α.n;

 
P=[skip;]

Fig. 6: Canonical Sequentialization: An Example of the Rewriting Process.

Figure 6 shows a small program with inter-process communication (P ) and its
canonical sequentialization (S) generated using the rewrite rules. We show that the
existence of a canonical sequentialization guarantees that uncertain intervals are
not affected by the different possible interleavings of processes during execution,
allowing us to generate correct monitoring code.

In contrast, consider the following program where the process α has a receive
statement that receives from two other processes:

α.res = receive(∗);
[ ]

α
‖ β.out = func1();

send(α, β.out);

[ ]
β

‖ γ.out = func2();
send(α, γ.out);

[ ]
γ

The final value of res depends on the runtime interleavings and it is difficult to
generate monitoring code at compilation time that soundly calculates an uncertain
interval combining all possible interleavings. Therefore, we limit our analysis only
to programs with canonical sequentializations and prove that the runtime is sound.

We use the notation developed in Chisel [26] to state the following soundness theo-
rem. Recall that Diamont’s runtime monitors two properties for each dynamic variable
x: (1) the maximum possible error magnitude (D[x].ε) and (2) a probability (D[x].δ)
that the precise value of x is within x±D[x].ε. The notation∆(x) denotes the true er-
ror of a variable x, and JR∗[E]K(σ,ϕ) denotes the true probability that an environment
σ sampled from the environment distribution ϕ satisfies the error comparison E.

Theorem 1 (Soundness of dynamic monitoring). For programs not con-
taining track and endorse statements, for all statements s, and for all x s.t.
Θ`x :dynamic t, Θ`s :Θ′ and 〈s, 〈σ,D, ϕ〉〉⇓ 〈s′, 〈σ′,D′, ϕ′〉〉 =⇒ JR∗[D′[x].ε≥
∆(x)]K(σ′,ϕ′)≥D′[x].δ

First, we use induction over the sequential subset of Diamont to show that, if the
program s type checks, and evaluates in the global environment σ and uncertainty
map D to s′, resulting in the environment σ′ and uncertainty map D′, then, for all
dynamic variables x, the true error of x is at most by D′[x].ε with probability at
least D′[x].δ. This indicates that we soundly over-approximate the uncertainty of x.

Next, we utilize canonical sequentialization to prove that the theorem holds for the
parallel subset of the language as well. First, we extend the results from [19] to prove
that if we can rewrite a parallel program P into a sequential program S, then P and
S have equivalent behavior. We use this fact to reason that our proof of soundness
for the sequential subset of Diamont is also applicable to parallel programs that can
be canonically sequentialized. Therefore, Theorem 1 holds and our overall analysis
is sound (full proof is available in Appendix D).

Our analysis only applies to programs with track and endorse statements if
developers use them in a sound manner. For track statements, developers must
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1 dyn-send(β, dynamic t, α.in);
2 α.out = dyn-recv(β, dynamic t);
3 check(α.out, dcheck, rcheck);

[ ]
α

‖
4 β.dat = dyn-recv(α, dynamic t);
5 // spec: 〈d ≥ ∆(res),r*R∗[(di≥∆(dat))] 〉
6 β.res = fn(β.dat);
7 dyn-send(α, dynamic t, β.res);

 
β

⇓
8 check(α.in, di, 0);
9 send(β, approx t, α.in);

10 α.tmp = receive(β, approx t);
11 α.out = track(α.tmp,d,r*rdDyn(α.in).δ);
12 check(α.out, dcheck, rcheck);



α

‖
13 β.dat = receive(α, approx t);
14 //〈d ≥ ∆(res),r*R∗[(di≥∆(dat))] 〉
15 β.res = fn(β.dat);
16 send(α, approx t, β.res);

 
β

Fig. 7: Optimizations Using Static Analysis in Diamont.

ensure that the bounds they provide are a sound over-approximation of the true
uncertainty at that program point. As in prior work [37], by inserting endorse

statements, developers certify that treating the relevant approx or dynamic value
as precise is always safe and will not result in undesirable behavior.

4 Optimizations for Reducing Overhead

We implemented several optimizations that transform the programs to reduce the
overhead of dynamic monitoring and proved them to be sound.

Communication. When communicating large dynamic type arrays, Diamont must
also communicate the uncertain interval for each array element, resulting in a large
communication overhead. One way to reduce this overhead is to calculate a single
conservative approximation of the set of uncertain intervals for the array elements.
For example, the maximum error of any element of an array can be soundly over-
approximated by the largest maximum error among all of its elements (similarly, the
smallest error confidence). The process sending the data calculates the conservative
approximation while using the regular communication primitives for the data. At the
end it sends the conservatively approximate uncertain interval. At the receiver, this
uncertain interval is taken as the uncertain interval of each element in the received
array and the compiler adds track statements to restart dynamic monitoring.

This optimization does not approximate the uncertain interval of the array at all pro-
gram points, rather it affects only communication statements. Even with the resulting
loss in precision of the analysis, Diamont still achieves better results than existing static
analyses which use a single uncertain interval for arrays through the entire program.

Utilizing static analysis. We can further reduce overheads by exploiting common
communication patterns. For example, the program at the top of Figure 7 contains
a remote procedure call. Process α sends an input to process β, which applies the
function fn to the input and returns the value. Transferring uncertain intervals along
with the data can become expensive if many such calls are made.

We use existing static analysis techniques [10, 19, 26] to analyze only the remote
function call and generate function specifications (precise semantics are in Ap-
pendix A Figure 9), even if they are unable to analyze the entire program. Consider
the transformed program at the bottom of Figure 7. Using the specification, Diamont
produces the same behavior as the original program by generating code to 1) check
if the specification requirements are satisfied (Line 8), 2) transfer the data as approx
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type (Line 9), 3) compute without dynamic monitoring, and 4) re-initialize dynamic
monitoring using the error guarantees from the specification (Line 11).

This optimization can be safely used when the function performs no communication
and has no other side effects. However, it may not be possible to verify some static
specifications at runtime. For example: the runtime will not be able to calculate
R∗[di≥∆(dat)] for some values for di. Therefore, this optimization may introduce
some imprecision to the dynamic monitoring.

Early checking. For a subset of instructions we can perform static analysis to stop
runtime monitoring earlier. We perform this task by moving up the check to the
earliest possible location using a set of rewrites. This rewrite rule is one such example:

α.x = α.a + α.b;
check(AExp, d, r);

[ ]
⇒ check(AExp[(α.a+α.b)/α.x], d, r);

α.x = α.a + α.b;

[ ]
In this rule, Diamont looks for a check immediately following an addition. Since the
error magnitude of the result of the addition is the sum of the error magnitudes of
the variables that are being added, we can substitute the result variable α.x in the
check with α.a+α.b. As the calc-del function of the runtime looks for the set of
variables in the specification (AExp), the error probability is calculated correctly
as well. Diamont can now safely move the check before the addition

These re-write rules closely follow the static analysis as defined and proven sound
in [19] for the sequential subset of the language (Appendix D.2.2). This optimization
reduces updates to the uncertainty map as monitoring can be stopped after the check
is performed. However, it can only be applied when the check refers to variables from
a single process. Further, the check cannot be moved up if error calculations depend
on the value of variables (as in multiplication/division).

Debloating and compiler optimizations. Diamont further reduces overhead by
using constant propagation and dead code elimination to remove unnecessary updates
to the uncertainty map. In addition, Diamont eliminates either error magnitude
monitoring or confidence monitoring based on the checks in the program. For example,
if all checks require the error magnitude to be zero (reliability in [10]) Diamont will
only calculate confidence at runtime.

4.1 Soundness

For each optimization we show that both the original program (s) and the optimized
version (sopt) produce the same behavior, i.e., if the original program fails a check,
the optimized version is also guaranteed to fail. Canonical sequentialization makes
such proofs easier. Formally, we define the soundness of an optimization as follows:

Definition 1 (Optimization soundness). For a program s and its optimized

version sopt, 〈s,〈σ,h〉,µ,D〉
∗−→ψ 〈s′,⊥, , 〉=⇒ 〈sopt,〈σ,h〉,µ,D〉

∗−→ψ 〈s′′,⊥, , 〉

This definition states that if there is an execution where the original program s
starting from an environment σ, heap h, uncertainty map D, and the global channel
set µ evaluates to s′ and enters into the error state (⊥), the optimized version sopt
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sseq =
β.dat = α.in;
β.res = fn(β.dat);
α.out = β.res;
check(α.out, dcheck, rcheck);

  sseqopt =

check(α.in, di, 0);
β.dat = α.in;
β.res = fn(β.dat);
α.tmp = β.res;
α.out = track(α.tmp,d,r*rdDyn(α.in).δ);
check(α.out, dcheck, rcheck);




Fig. 8: Example Sequentializations Used in the Proofs

starting from the same state σ, heap h, and D must also enter the error state (even
if the final channel or uncertainty map states differ).

For each optimization, we show that the pairs s and sopt are sound according to
this definition. Consider the static analysis based optimization in Figure 7. Proving
the soundness of this optimization requires us to show that the two parallel programs
produce the same result with regards to the dynamic monitoring. We can simplify
this process significantly by using sequentialization. We first show that the two
versions of the program can be sequentialized to sseq and sseqopt in Figure 8. These
sequentializations produce final environments that are equivalent to the original
versions as proven in Lemma 1 (Appendix C). We can now simplify the proof to
reasoning over the two sequential programs sseq and sseqopt . We can next argue over
all executions resulting in a check failure in sseq and show that they result in a check
failure in sseqopt (The full proofs are in Appendix D).

5 Methodology

Implementation and Testing Setup We parsed and translated Go programs
written using a library of Diamont primitives to Diamont-IR using ANTLR. We
used Python to sequentialize Diamont programs for checking properties such as
type safety and deadlock-freedom, and then for generating instrumented Go code.
We implemented distributed communication using RabbitMQ 3.8.7. We ran our
experiments on a machine with a Xeon E5-1650 v4 CPU, 32 GB RAM, and Ubuntu
18.04. Each benchmark consisted of 8-10 worker processes.

Benchmarks We implemented a set of popular parallel benchmarks from prior
literature that exhibit diverse parallel patterns and verified properties that quantify
uncertainty in their executions (Table 1). We looked at the following benchmarks:

– PageRank, SSSP, BFS: Graph benchmarks commonly used in distributed Big
Data applications. PageRank is used for search result optimization [27]. Single
Source Shortest Path is used to make data routing decisions. Breadth First Search
is used to find connected components in graphs. From CRONO [2].

– SOR: A kernel for successive over-relaxation. Used to extrapolate the state of a
system over time. From Chisel [26].

– Sobel: Sobel edge-detection filter. From AxBench [44].

– Matrix Mult.: Multiplies two square matrices. Each worker process computes a
subset of rows of the product.

– Kmeans-Agri: Partitions n-dimensional input points into k clusters (Section 2).

– Regression: Performs distributed linear regression on 2-D data. Each worker
performs regression on a subset of data. The master thread averages the results.
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Table 1: Benchmarks, Verified Properties, and Runtime Monitoring Overhead for
Diamont. Baselines: ?:Decaf, †:AffineFloat

Benchmark Pattern Verified Property
Overhead

Baseline Diamont
PageRank Scatter-Gather checkArr(pagerank, 0, 0.9912) 30%? 3.63%
SSSP Scatter-Gather checkArr(distance, 0, 0.9925) 33%? 2.31%
BFS Scatter-Gather checkArr(visited, 0, 0.9925) 30%? 4.06%

SOR Stencil checkArr(output, 1.19×10−7, 1) 60%† 3.49%

Sobel Stencil checkArr(output, 2.38×10−7, 1) 71%† 9.71%

Matrix Mult. Map checkArr(product, 6.6×10−6, 1) 80%† 16.27%

Kmeans-Agri Map checkArr(centers, 〈1.5, 0.9948〉, 〈2,0.9948〉) 42%?† 3.32%
Regression Map-Reduce check(alpha, 0, 0.99)∧check(beta, 0, 0.99) 37%? 0.45%

Inputs. The inputs for each benchmark used for our experiments are shown in
Appendix E. For Section 6.3, we used larger inputs created by increasing the size
of the array, the number of samples, or by using a larger input graph.

Sources of uncertainty. Noisy channels occasionally corrupt data sent over them
(used for PageRank, SSSP, BFS, and Kmeans-Agri). We use a corruption rate of
10−7. Precision reduction reduces floating point precision from 64-bit to 32-bit during
communication only to save bandwidth (used in SOR, Sobel, Matrix Mult.). The
input provided to the program itself can have inherent uncertainty. For Kmeans-Agri,
we assume a 50:50 mixture of two different temperature-humidity sensors with
different error specifications. Timing errors can cause the program to use stale or
incomplete values (used for Regression).

Baselines. We compare the runtime of Diamont with optimizations to a baseline
which is a straightforward parallel implementation of an existing static analysis via
Diamont (either Decaf [6] or AffineFloat [13] without roundoff errors).

6 Evaluation

6.1 Can we verify important uncertainty properties using Diamont?

For each benchmark, we used Diamont to verify the properties shown in Column 3
of Table 1. Diamont successfully verified these properties on the final output of
the program. Each check places an error magnitude and confidence bound on a
single variable. For arrays each element must satisfy these bounds. For PageRank,
SSSP, and BFS, the bounds ensure that key graph properties are calculated exactly
≥99% of the time per node. For SOR, Sobel and Matrix Mult., the bounds limit the
maximum error of the output due precision reduction. Kmeans-Agri was discussed
in the example. For Regression, the bounds ensure that the output line parameters
are correct ≥99% of the time (high confidence is desirable for predictive models).

Parallely [19] cannot verify these properties. Diamont’s dynamic analysis of arrays
and unbounded loops more effectively handles irregular input structure (e.g., graphs),
which had to be conservatively bounded for static analysis. This allowed us to verify
stronger properties for significantly bigger inputs than previously possible for existing
reliability and accuracy static analyses. We observed that, even in the presence of
errors, the error magnitude of the final outputs of our programs was acceptable.
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Optimizations can affect the precision of the analysis. This effect is prominent
in benchmarks with irregular computations (graph benchmarks). However, in our
benchmarks, we found that baseline and optimized Diamont could verify nearly the
same uncertainty bounds. For example, for BFS, Diamont could verify a confidence
of 0.999 when using the baseline version. For benchmarks with regular computation
patterns, such as SOR and Regression, there was no significant change.

In summary, Diamont verifies important end-to-end uncertainty properties that
cannot be verified using existing static analyses.

6.2 What are the overheads associated with Diamont?

Columns 4 and 5 of Table 1 present the overhead of the baseline and optimized
Diamont benchmarks respectively. Time for I/O and setup is excluded. Overhead is
calculated as the percentage increase in runtime w.r.t. an unmonitored benchmark.

In our benchmarks, the runtime is dominated by communication, as is common
in many distributed settings. In most cases, the runtime overhead for computing
the uncertain intervals is a small fraction of the total runtime. Error magnitude
calculation requires more computation than error confidence (see Figure 5). As a
result, overhead for error magnitude benchmarks (SOR, Sobel, Matrix Mult.), is
higher. This was especially true for the computationally intensive Matrix Mult.

Optimization impact. The Regression benchmark used a statically verified ker-
nel error specification to eliminate monitoring. The communication optimization
contributes around 98% of savings in all other benchmarks. Debloating also provided
significant speedups. For example, without debloating PageRank is 3.9x slower and
Sobel is 3.3x slower (our baseline is comparable to Diamont with debloating).

Are the overheads justified? Approximations have led to significant savings in
prior work: 1) Communication: up to 62% performance improvement in approximate
NoCs [11,17], and 2) Computation: 2x speedup in loop perforation [40], 2.7x speedup
in Paraprox [34], and up to 1.3x speedup from reduced precision in Precimonious [33].
As Diamont’s post-optimization overhead is lower than the speedups from these
approximations, it can be used in conjunction with them to provide guarantees on
the quality of results while still getting speedups.

In summary, With optimization, overhead of Diamont analysis is at most 16.3% for
our benchmarks, with a geomean of 3.04%.

6.3 How does Diamont overhead depend on the program inputs?

Figure 9 shows the effect of input size on Diamont overhead. The X-Axis shows the
relative input size and the Y-Axis shows overhead. The dashed and solid lines show
the unoptimized baseline and optimized Diamont versions respectively. Each marker
indicates a different benchmark. Overall, the overhead of the optimized versions
is significantly lower than the baseline versions. Most optimized versions have an
overhead less than 25% for all inputs. The table in Figure 9 shows the geomean of
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Size Baseline Diamont
2x 69.1% 8.68%
4x 84.4% 10.2%
6x 93.7% 14.1%
8x 91.8% 12.9%

Fig. 9: Input Size vs. Overhead. Table shows geomean overheads across programs.

the overhead across all benchmarks for different relative input sizes. While baseline
overhead increases to an average of 94%, optimized overhead only reaches 14%.

For Matrix Mult., computation increases faster with input size than communication
(O(n3) vs. O(n2)). Thus the major source of overhead becomes the computation of
the monitored uncertainty, rather than communication. This benchmark illustrates
that Diamont is more useful in cases where the program is communication-bound.

The unoptimized baseline also sends significantly more data (3x to 5x) compared
to the optimized version. This is due to the array communication optimization. The
communication overhead of the optimized version is negligible.

In summary, as input size grows, the improvement caused by optimizations on
Diamont runtime performance increases over the baseline runtime system.

7 Related Work

Several analyses are related (in part) to Diamont’s functionality, as shown in Table 2.
Columns 2-4 indicate whether the analysis is static, empirical (sampling-based), or
runtime based. Columns 5-6 indicate support for error confidence (reliability) and
error magnitude (accuracy) analysis. Column 9 indicates if the system can support
multiple sources of uncertainty. In contrast to all these analyses, Diamont is the only
one flexible enough to simultaneously support multiple analyses and approximation
sources, and in addition, extending these to parallel programs.

Static Analyses for Approximate Programs. Though multiple static analyses
target approximate programs (e.g., [8, 9, 12, 23, 26, 28, 35, 37]), most relevant to Dia-
mont is Parallely [19], which retains the limitations of the underlying static analyses
requiring developers to provide bounds on loop iterations, array sizes, and number of
processes. In contrast, Diamont successfully combines static and dynamic analysis and
works on a real language (Go), which jointly allow for verification of much larger bench-
marks. Additionally, Diamont also extends sequentialization for dynamic conditions.

Dynamic Analysis and Runtime Monitoring. DECAF [6] performs dynamic
reliability verification through type inference. Our work avoids DECAF’s strict
independence assumptions by adding reliabilities instead of multiplying (both bounds
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Table 2: Comparison of Related Work. (X* indicate analyses that monitor confidence
intervals, which is another interpretation of Diamont’s uncertain intervals)

Method Static Empirical Runtime Reliability Accuracy Verified Parallel Multi-Source
Diamont X × X X X X X X
Parallely X × × X X X X X
Rely X × × X × X × ×
Chisel X X × X X X × X
DECAF X × X X × X × ×
EnerJ X X × × × X × ×
AffineFloat X × X × X X × ×
PAssert × X X X* X* X × ×
Uncertain<T> × X X X* X* × × ×

are close in practice). Ringenburg et al. [32] propose offline and online approaches
to monitor the quality of programs, using methods such as dataflow techniques and
comparison to the precise program. Diamont instead propagates uncertain intervals
during both static and dynamic phases, allowing it to monitor uncertainty with
greater precision. Maderbacher et al. [25] focus on precisely correcting bitflips with
minimal checks. In contrast, Diamont monitors uncertainty from many sources in
programs that can tolerate some error.

AffineFloat [13] and Ceres [14] provide dynamic analysis for numerical error.
Herbgrind [38] locates possible sources of numerical error. These tools measure
floating point roundoff errors, but have high overhead. Diamont focuses on analyzing
error from casting and external sources e.g., sensors. Uncertain〈T〉 [4] used an early
form of uncertain intervals, however they use sampling to determine error. Statistical
model checking tools [39] can provide statistical guarantees on program properties
expressed in a temporal logic. PAssert [36] and AxProf [21] statistically verify at
development time a single probabilistic assertion at the end of the program. In contrast,
Diamont supports many checks at different points in the program at runtime.

8 Conclusion

The past decade brought many techniques for developing new approximations and
analyzing uncertainty for specific scenarios, but much less work has been done in
integrating these diverse concepts in a unifying, rigorous, and extensible framework.
Diamont aims to pave the way toward that goal – it supports multiple uncertainty
sources (input noise, variable-precision code, errors in communication, and unre-
liability in hardware), combines static analysis and dynamic monitoring, supports a
significant fragment of the Go language, and operates on several emerging applications
(precision agriculture, graph analytics, and media processing).

We demonstrated the benefit of our analysis and optimizations by reducing the
execution overhead to 3% on avearge (16.3% maximum). We believe this work can
serve as a starting point for sound runtime systems in domains that need to rigorously
handle uncertainty, such as robotics or the Internet-of-Things.
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