
Appendix: Diamont: Dynamic Monitoring of Uncertainty for

Distributed Asynchronous Programs

In this appendix we present the following:

• Appendix A - Syntax and Semantics of Diamont.

• Appendix B - Type system for Diamont and additional semantic rules.

• Appendix C - Rewrite rules and proof of soundness for the rewrite system.

• Appendix D - Precise definition of reliability. Proofs for the soundness properties stated in the

paper.

• Appendix E - Additional details of our evaluation.

• Appendix F - Simplified sequentialized version of the code in the example section.

1

Appendix A

A.1 SYNTAX

𝑛 ∈ N quantities
𝑚, 𝑣 ∈ N ∪ F ∪ {∅} values
𝑑 ∈ R reals
𝑟 ∈ [0, 1.0] probability
𝑥, 𝑏, 𝑋 ∈ Var variables
𝑎 ∈ ArrVar array variables
𝛼, 𝛽 ∈ Pid process ids

Exp → 𝑚 | ⟨𝑚, 𝑣 ⟩ | 𝑥 expressions
| (Exp) | Exp op Exp

𝐴Exp → 𝑑 | 𝑑 · 𝑥 | 𝑑 · 𝑎[Exp+] affine
| 𝐴Exp +𝐴Exp expressions

𝑞 → precise | approx | dynamic type qualifiers
𝑡 → int<n> | float<n> basic types
𝑇 → 𝑞 𝑡 | 𝑞 𝑡 [] | struct 𝑇 + types
Dec → T x | T a[𝑛+] | Dec; Dec declarations

𝑃 → [Dec ; 𝑆]𝛼 process
| Π.𝛼 : 𝑋 [Dec ; 𝑆]𝛼 process group
| 𝑃 ∥ 𝑃 parallel comp

𝑆 → skip empty program
| 𝑥 = Exp assignment
| send(𝛼, T , x) send message
| 𝑥 = receive(𝛼, T) receive a message
| 𝑥 = 𝑎[Exp+] array load
| 𝑎[Exp+] = Exp array store
| for 𝑥 : [Pid+]{𝑆} iterate over processes
| if 𝑥 𝑆 𝑆 branching
| 𝑥 = 𝐸𝑥𝑝? Exp : Exp conditional choice
| while b {S} while loop
| 𝑥 = (T)𝐸𝑥𝑝 cast
| 𝑆;𝑆 sequence
| cond-send(x, 𝛼, T) send that can fail
| 𝑏, 𝑥 = cond-receive(𝛼, T) receive a cond-send
| 𝑥 = Exp [𝑟] Exp probabilistic choice
| dyn-send(𝛼, T , x) send dynamic
| 𝑥 = dyn-receive(𝛼, T) receive a dyn-send
| 𝑥 = rdDyn(y) read dynamic property
| 𝑥 = endorse(y) cast to precise
| 𝑥 = track(y, ⟨d, r⟩+) initiate monitoring
| Check check specification

Check→ check(𝐴Exp, ⟨d, r⟩+) check dynamic property
| checkArray(a, ⟨d, r⟩+) check array

Fig. 1. Diamont Syntax

2

Appendix A 3

A.2 SEMANTICS OF THE DIAMONT INTERMEDIATE REPRESENTATION
A.2.1 Basic Definitions and Semantics

References, Frames, Stacks, andHeaps.A reference is a pair ⟨𝑛𝑏, ⟨𝑛1, ..., 𝑛𝑘⟩⟩ ∈ Ref that contains
a base address 𝑛𝑏 ∈ 𝐿𝑜𝑐 and dimension descriptor ⟨𝑛1, ..., 𝑛𝑘⟩ denoting the location and dimension

of variables in the heap. A frame 𝜎 ∈ E = Var → Ref maps program variables to references. A heap
ℎ ∈ 𝐻 = N→ N ∪ F ∪ {∅} is a finite map from addresses to values. Values can be an Integer, Float

or the special empty message (∅).
Programs. Diamont defines a program as a parallel composition of processes. We denote a program

as 𝑃 = [𝑃]1 ∥ · · · ∥ [𝑃]𝑛 , where 1 . . . 𝑛 are process identifiers. Individual processes execute their

statements sequentially. Each process has a unique process identifier (Pid). Processes can refer to

each other using Pids. We write <pid>.<var> to refer to variable <var> of process <pid>. When

unambiguous, we will omit <pid> and just write <var>.

Dynamic PropertyMap.A dynamic property map𝐷 is an element ofDyn = Var×N→ R×[0, 1.0].
𝐷 [⟨𝑥, 𝑖⟩] refers to the i𝑡ℎ element of an array x. For regular variables we use 𝐷 [𝑥] instead of

𝐷 [⟨𝑥, 1⟩]. This map maintains a maximum absolute error (𝜖), and a probability/confidence (𝛿)

that the true error is below 𝜖 for each dynamic typed variable (or element of an array). We use

𝐷 [𝑥] .𝜖 to refer to the first element in the pair (maximum error) and 𝐷 [𝑥] .𝛿 for the second element

(probability).

TypedChannels andMessageOrders.The global channel ` ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑃𝑖𝑑 × 𝑃𝑖𝑑 ×𝑇𝑦𝑝𝑒 → 𝑉𝑎𝑙∗

consists of a set of sub-channels for each pair of processes, further split by the type of the message.

Processes communicate by sending and receiving messages over these typed channels. Messages

on the same sub-channel are delivered in order but there are no guarantees for messages sent

on separate (sub)channels. For each type 𝑡 , we define a special sub-channel (` [⟨𝛼, 𝛽, 𝐷𝑡 ⟩]) for
transmitting dynamically monitored information for variables of type 𝑡 between a pair of processes.

Messages sent in this channel are sent as precise and should not be corrupted or dropped.

Global and Local Environments. Each process maintains its own private environment consist-

ing of a frame, and a heap ⟨𝜎𝑖 , ℎ𝑖⟩ ∈ Λ = {𝐻 × E} ∪ ⊥, where ⊥ is considered to be an error

state. Individual processes may only access their own private environments. We define a global

configuration as ⟨𝜖, `, 𝜔, 𝑃⟩, consisting of a global environment, channel, global dynamic property

map, and global program. The global environment is a map from Pids to the local environment

𝜖 ∈ 𝐸𝑛𝑣 = 𝑃𝑖𝑑 ↦→ Λ. The global dynamic map 𝜔 is a map from the Pids to the local dynamic map

𝜔 ∈ 𝑃𝑖𝑑 ↦→ Dyn.
Uncertainty in programs. To define randomness in programs executions we define an uncertainty
model 𝜓 ∈ (Pid × Pid ×𝑇 → R) × (𝑥 → R).𝜓 maps each probabilistic choice statement and each

channel to a probability of error. We also use this model to define functional specifications. We

define a special uncertainty model 1𝜓 , which models the evaluation of the program in a deterministic

setting without any randomness through errors, etc. Under exact execution, probabilistic choice

statements always evaluate to the first option and casting performs no change.

Sensors. We consider that a precise execution of the program reads from an oracle sensor. We

model successive readings from this sensor as a tape of perfect sensor measurements predetermined

at the start of the program. Under 1𝜓 , the program will use these ground truth measurements.

We model noisy sensors as reading perturbed values from this tape using probabilistic choice

statements. Several probabilistic choice statements could be combined to define various error

models (temp = readSensor()[r1] (readSensor()+noise [r2] ...);). This interpretation allows us to consider

the relative difference in an execution from a error free run. We assume a finite level of precision

in the sensors to enable us to define a finite set of environments that can deviate from the original.

4

A.2.2 Review of Semantics of Basic Statements
We now review the semantics of statements (extends those of Parallely [3])

Expressions. We use a big-step evaluation relation of the form ⟨𝑒, 𝜎, ℎ⟩w� 𝑣 . In Diamont, an

expression 𝑒 evaluates deterministically in a single step in a frame 𝜎 , a heap ℎ to a value 𝑣 without

any changes to the environment. Diamont supports typical integer and floating point operations.

We allow calls to functions that do not perform communication and inline them as a preliminary

step. 𝜌 (𝑒) returns the list of variables used in an expression 𝑒 . The semantics are available in

Figure 2.

E-Const

⟨𝑚,𝜎,ℎ⟩w�𝑚

E-Var

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥)
⟨𝑥, 𝜎,ℎ⟩w� ℎ (𝑛𝑏)

E-Iop

⟨𝑒1, 𝜎,ℎ⟩w� 𝑣1 ⟨𝑒2, 𝜎,ℎ⟩w� 𝑣2

⟨𝑒1 op 𝑒2, 𝜎,ℎ⟩w� 𝑣1 op 𝑣2

Fig. 2. Big-step Semantics of Expressions

Statements. The small-step relation of the form ⟨𝑠, ⟨𝜎,ℎ⟩, `, 𝐷⟩ 1−→𝜓 ⟨𝑠 ′, ⟨𝜎 ′, ℎ′⟩, ` ′, 𝐷 ′⟩ de-

fines a process in the program evaluating in its local frame 𝜎 , heap ℎ, dynamic property map 𝐷 , and

the global channel `. Figure 3 defines the semantics for basic statements. Expression assignment

updates the heap with the result of evaluating the expression. The send rules asynchronously adds

a new message to the end of the communication queue between the processes. The receive rules

blocks until it can remove a message from the head of the communication queue (v::q denote

accessing a queue’s head v, and q++v denotes appending v to the queue).

A.2.3 Global Semantics
Small step transitions of the following form define the parallel program taking a step due a single

process 𝛼 taking a local step with probability 𝑝 .

𝜖 [𝛼] = ⟨𝜎,ℎ⟩ 𝜔 [𝛼] = 𝐷 ⟨𝑃𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
𝑝

−→ ⟨𝑃 ′
𝛼 , ⟨𝜎,ℎ′⟩, `′, 𝐷′⟩

𝑝𝑠 = 𝑃𝑠 [𝛼 | (𝜖, `, 𝑃𝛼 ∥ 𝑃𝛽)] 𝑝′ = 𝑝 · 𝑝𝑠

(𝜖,𝜔, `, 𝑃𝛼 ∥ 𝑃𝛽)
𝛼,𝑝′
−→𝜓 (𝜖 [𝛼 ↦→ ⟨𝜎′, ℎ′⟩], 𝜔 [𝛼 ↦→ 𝐷′], `′, 𝑃 ′

𝛼 ∥ 𝑃𝛽)

𝜖 [𝛼] = ⟨𝜎,ℎ⟩ 𝜔 [𝛼] = 𝐷

⟨𝑃𝛼 , 𝜎,ℎ, `, 𝐷 ⟩
𝑝

−→ ⟨𝑃 ′
𝛼 ,⊥, `′, 𝐷′⟩

𝑝𝑠 = 𝑃𝑠 [𝛼 | (𝜖, `, 𝑃𝛼 ∥ 𝑃𝛽)] 𝑝′ = 𝑝 · 𝑝𝑠

(𝜖,𝜔, `, 𝑃𝛼 ∥ 𝑃𝛽)
𝛼,𝑝′
−→𝜓 (⊥, 𝜔, `′, skip)

A.2.4 Semantics of Dynamic monitoring
Figure 4 presents the semantics of statements that perform dynamic monitoring. These statements

update the environment for dynamic typed variables and also update their corresponding value in

the Dynamic property map. Statements that update dynamically monitored variables can only use

variables of type dynamic and constants. This property is enforced by the type checker.

Dynamic monitoring variants of each of the regular statements have the same functionality

along with a function that can calculate the uncertainty interval for the updated variables. Based

Appendix A 5

S-Assign-Static

⟨𝑒, 𝜎,ℎ⟩w� 𝑣 ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥)
ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣]

⟨[𝑥 = e]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `′, 𝐷 ⟩

S-Send

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑦) ` [⟨𝛼, 𝛽, 𝑡 ⟩] =𝑚

ℎ [𝑛𝑏] = 𝑣 `′ = ` [⟨𝛼, 𝛽, 𝑡 ⟩ ↦→𝑚 + +𝑣]
⟨[send(𝛽, t, y)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

1−→𝜓 ⟨skip, ⟨𝜎,ℎ⟩, `′, 𝐷 ⟩

S-Receive

` [⟨𝛽, 𝛼, 𝑡 ⟩] = 𝑣 ::𝑚 ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥)
ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣] `′ = ` [⟨𝛽, 𝛼, 𝑡 ⟩ ↦→𝑚]

⟨[x = receive(𝛽, t)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `′, 𝐷 ⟩

S-CondSend-True

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑦) ℎ [𝑛𝑏] = 𝑣

` [⟨𝛼, 𝛽, 𝑡 ⟩] =𝑚 `′ = ` [⟨𝛼, 𝛽, 𝑡 ⟩ ↦→𝑚 + +𝑣]

⟨[cond-send(𝛽, t, y)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
𝜓 (𝛼,𝛽,𝑡)
−→𝜓 ⟨skip, ⟨𝜎,ℎ⟩, `′, 𝐷 ⟩

S-CondSend-False

` [⟨𝛼, 𝛽, 𝑡 ⟩] =𝑚 `′ = ` [⟨𝛼, 𝛽, 𝑡 ⟩ ↦→𝑚 + +∅]

⟨[cond-send(𝛽, t, y)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−𝜓 (𝛼,𝛽,𝑡)
−→𝜓 ⟨skip, ⟨𝜎,ℎ⟩, `′, 𝐷 ⟩

S-CondReceive-True

` [⟨𝛽, 𝛼, 𝑡 ⟩] = 𝑣 ::𝑚 𝑣 ≠ ∅ ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥)
ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣] `′ = ` [⟨𝛽, 𝛼, 𝑡 ⟩ ↦→𝑚]

⟨[𝑥 = cond-receive(𝛽, t)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `′, 𝐷 ⟩

S-CondReceive-False

` [⟨𝛽, 𝛼, 𝑡 ⟩] = ∅ ::𝑚 `′ = ` [⟨𝛽, 𝛼, 𝑡 ⟩ ↦→𝑚]

⟨[𝑥 = cond-receive(𝛽, t)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ⟩, `′, 𝐷 ⟩

S-Seq-R1

⟨𝑠1, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
𝑝

−→𝜓 ⟨𝑠′
1
, ⟨𝜎′, ℎ′⟩, `′, 𝐷′⟩

⟨𝑠1;𝑠2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
𝑝

−→𝜓 ⟨𝑠′
1
;𝑠2, ⟨𝜎′, ℎ′⟩, `′, 𝐷′⟩

S-Seq-R2

⟨skip;𝑠2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨𝑠2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

S-repeat-C

𝑁 ≠ 0

⟨repeat N {𝑆 }, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨S;repeat N-1 {𝑆 }, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

S-repeat-S

𝑁 = 0

⟨repeat N {𝑆 }, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷 ⟩

S-Par-Iter

𝑄 = {𝛼1, ..., 𝛼𝑘 }

⟨for 𝑥 : 𝑄 {𝑆 }, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨[𝑆 [𝛼1/𝑥]]𝛼
1

∥ . . . ∥ [𝑆 [𝛼𝑘/𝑥]]𝛼𝑘 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

S-If-True

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ [𝑛𝑏] ≠ 0

⟨if 𝑥 𝑠1 𝑠2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨𝑠1, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

S-If-False

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ [𝑛𝑏] = 0

⟨if 𝑥 𝑠1 𝑠2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨𝑠2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

Fig. 3. Operational Semantics of Statements

on the definition of these functions, dynamic monitoring instrumentation code is generated by the

compiler.

Diamont associates each dynamic typed variable with a maximum error 𝜖 and a confidence 𝛿 . If

a variable’s stored value is 𝑣 , then the true value should lie in the range 𝑣 ± 𝜖 with probability 𝛿 .

6

S-Assign-Dyn

𝑥 ∈ 𝐷 ⟨𝑒, 𝜎,ℎ⟩w� 𝑣 𝑑 = ⟨calc-eps(𝑒, 𝐷), calc-del(𝑒, 𝐷) ⟩
⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣] 𝐷′ = 𝐷 [𝑥 ↦→ 𝑑]

⟨𝑥 = e, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Assign-Prob-Dyn-True

𝑥 ∈ 𝐷 ⟨𝑒1, 𝜎,ℎ⟩w� 𝑣1 𝑑 = ⟨calc-eps(𝑒1, 𝐷), calc-del(𝑒1, 𝐷) ×𝜓 (𝑟 𝑓) ⟩
⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣1] 𝐷′ = 𝐷 [𝑥 ↦→ 𝑑]

⟨𝑥 = 𝑒1 [𝑟 𝑓] 𝑒2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
𝜓 (𝑟 𝑓)
−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Assign-Prob-Dyn-False

𝑥 ∈ 𝐷 ⟨𝑒2, 𝜎,ℎ⟩w� 𝑣2 𝑑 = ⟨calc-eps(𝑒1, 𝐷), calc-del(𝑒1, 𝐷) ×𝜓 (𝑟 𝑓) ⟩
⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣2] 𝐷′ = 𝐷 [𝑥 ↦→ 𝑑]

⟨𝑥 = 𝑒1 [𝑟 𝑓] 𝑒2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−𝜓 (𝑟 𝑓)
−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Cast

⟨𝑛′
𝑏
, ⟨1⟩⟩ = 𝜎 (𝑦) ℎ [𝑛′

𝑏
] =𝑚 ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥)

𝑚′ = cast(T,𝑚) ℎ′ = ℎ [𝑛𝑏 ↦→𝑚′]
𝑑 = ⟨cast-eps(𝑥, 𝑦, 𝐷), 𝐷 [𝑦] .𝛿 ⟩ 𝐷′ = 𝐷 [𝑥 ↦→ 𝑑]

⟨𝑥 = (dynamic T)𝑦, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-DynSend

` [⟨𝛼, 𝛽, 𝐷𝑡 ⟩] =𝑚𝑑

`′ = ` [⟨𝛼, 𝛽, 𝐷𝑡 ⟩ ↦→𝑚𝑑 + +𝐷 [𝑦]]
⟨[dyn-send(𝛽, t, y)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

1−→𝜓 ⟨[cond-send(𝛽, t, y)]𝛼 , ⟨𝜎,ℎ⟩, `′, 𝐷 ⟩

S-DynReceive

` [⟨𝛽, 𝛼, 𝐷𝑡 ⟩] = 𝑑 ::𝑚𝑑 `′ = ` [⟨𝛽, 𝛼, 𝐷𝑡 ⟩ ↦→𝑚𝑑]
𝑑𝑏 = ⟨𝑑.𝜖, 𝑑.𝛿 ×𝜓 (𝛽, 𝛼, 𝑡) ⟩ 𝐷′ = 𝐷 [𝑥 ↦→ 𝑑𝑏]

⟨[𝑥 = dyn-receive(𝛽, t)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−→𝜓 ⟨[𝑥 = cond-receive(𝛽, t)]𝛼 , ⟨𝜎,ℎ′⟩, `′, 𝐷′⟩

S-RdDyn

𝐷 [𝑦] = 𝑣 ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣]

⟨𝑥 = rdDyn(𝑦), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷 ⟩

Fig. 4. Semantics of Dynamic Monitoring

Communication. During communication that uses the dyn-send statements, the dynamically

monitored property value is communicated using the relevant dynamic channel (` [⟨𝛼, 𝛽, 𝐷𝑡 ⟩]) in
addition to the message itself through code generated by the compiler.

Conditionals. Diamont has the conditional choice statement 𝑥 = bExp? Exp
1
: Exp

2
that can use

dynamically monitored variables inside the bExp. In these situations the maximum error and error

confidence of the assigned variable 𝑥 need to be calculated with care based on the uncertainty

interval. If the entire interval satisfy a condition we can confidently calculate the maximum error

form the resultant expression. If not we must assume the worst case whereby we could have chosen

the wrong branch, thus the maximum error depends on the difference between Exp
1
and Exp

2
.

Figure 5 defines the precise semantics for conditionals.

Appendix A 7

S-Assign-Cond-Dyn-True

(𝑥, 𝜖, 𝛿) ∈ 𝐷 𝑥 − 𝜖 > 𝑟

𝑑 = get-dyn-choice(𝑒1, 𝛿, 𝐷)
⟨𝑒1, 𝜎,ℎ⟩w� 𝑣1 ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑦)

ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣1] 𝐷′ = 𝐷 [𝑦 ↦→ 𝑑]

⟨𝑦 = 𝑥 > 𝑟? 𝑒1 : 𝑒2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Assign-Cond-Dyn-False

(𝑥, 𝜖, 𝛿) ∈ 𝐷 𝑥 + 𝜖 < 𝑟

𝑑 = get-dyn-choice(𝑒2, 𝛿, 𝐷)
⟨𝑒2, 𝜎,ℎ⟩w� 𝑣2 ⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑦)

ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣2] 𝐷′ = 𝐷 [𝑦 ↦→ 𝑑]

⟨𝑦 = 𝑥 > 𝑟? 𝑒1 : 𝑒2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Assign-Cond-Dyn-unknown-True

(𝑥, 𝜖, 𝛿) ∈ 𝐷 𝑥 + 𝜖 > 𝑟 𝑥 − 𝜖 < 𝑟 𝑥 > 𝑟

𝑑1 = get-dyn-exp(𝑒1, 𝐷) 𝑑2 = get-dyn-exp(𝑒2, 𝐷)
⟨𝑒1, 𝜎,ℎ⟩w� 𝑣1 ⟨𝑒2, 𝜎,ℎ⟩w� 𝑣2

𝜖′ = |𝑣1 − 𝑣2 | ×max(𝑑1.𝜖, 𝑑2.𝜖)
𝐷′ = 𝐷 [𝑦 ↦→ ⟨𝜖′, min(𝑑1.𝛿, 𝑑2.𝛿) ⟩]
⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣1]

⟨𝑦 = 𝑥 > 𝑟? 𝑒1 : 𝑒2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Assign-Cond-Dyn-unknown-False

(𝑥, 𝜖, 𝛿) ∈ 𝐷 𝑥 + 𝜖 > 𝑟 𝑥 − 𝜖 < 𝑟 𝑥 < 𝑟

𝑑1 = get-dyn-exp(𝑒1, 𝐷) 𝑑2 = get-dyn-exp(𝑒2, 𝐷)
⟨𝑒1, 𝜎,ℎ⟩w� 𝑣1 ⟨𝑒2, 𝜎,ℎ⟩w� 𝑣2
𝜖′ = |𝑣1 − 𝑣2 | ×max(𝑑1.𝜖, 𝑑2.𝜖)

𝐷′ = 𝐷 [𝑦 ↦→ ⟨𝜖′, min(𝑑1.𝛿, 𝑑2.𝛿) ⟩]
⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣2]

⟨𝑦 = 𝑥 > 𝑟? 𝑒1 : 𝑒2, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

Fig. 5. Semantics of Dynamic Conditionals

Arrays. To increase the precision of array analysis, when dynamic type arrays are declared, we
allocate an entry in 𝐷 for each array element. When array elements are updated, we also update

their corresponding dynamically monitored value. The array semantics are available in Figure 6.

Dec-Array

∀𝑖 .𝑛𝑖 > 0 ⟨𝑛𝑏 , ℎ′⟩ = new(ℎ, ⟨𝑛1 ...𝑛𝑘 ⟩)
𝐷′ = init(𝐷, ⟨𝑛1 ...𝑛𝑘 ⟩, init-track())

𝜎′ = 𝜎 [𝑥 ↦→ ⟨𝑛𝑏 , ⟨𝑛1 ..𝑛𝑘 ⟩⟩]

⟨T x[𝑛1 ...𝑛𝑘], ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎′, ℎ′⟩, `, 𝐷′⟩

S-Array-Load

∀𝑖 . ⟨𝑒𝑖 , 𝜎,ℎ⟩w� 𝑙𝑖 ⟨𝑛𝑏 , ⟨𝑙1, ..., 𝑙𝑘 ⟩⟩ = 𝜎 (𝑎)
𝑛𝑜 = 𝑙𝑘 + Σ𝑘−1𝑖=0 𝑛𝑖 · 𝑙𝑖

𝑣 = ℎ (𝑛𝑏 + 𝑛𝑜) 𝐷′ = 𝐷 [𝑥 ↦→ 𝐷 [⟨𝑎, 𝑛𝑜 ⟩]]
⟨𝑛′

𝑏
, ⟨1⟩⟩ = 𝜎 (𝑥) ℎ′ = ℎ [𝑛′

𝑏
↦→ 𝑣]

⟨𝑥 = 𝑎[𝑒1, ..., 𝑒𝑖 , ..., 𝑒𝑘], ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Array-Store

∀𝑖 . ⟨𝑒𝑖 , 𝜎,ℎ⟩w� 𝑙𝑖 ⟨𝑛𝑏 , ⟨𝑙1, ..., 𝑙𝑘 ⟩⟩ = 𝜎 (𝑎)
𝑛𝑜 = 𝑙𝑘 + Σ𝑘−1𝑖=0 𝑛𝑖 · 𝑙𝑖 𝐷′ = 𝐷 [⟨𝑎, 𝑛𝑜 ⟩ ↦→ 𝐷 [𝑥]]

⟨𝑛′
𝑏
, ⟨1⟩⟩ = 𝜎 (𝑥) 𝑛 = ℎ (𝑛′

𝑏
) ℎ′ = ℎ [(𝑛𝑏 + 𝑛𝑜) ↦→ 𝑣]

⟨𝑎[𝑛1, ..., 𝑒𝑖 , ..., 𝑒𝑘] = 𝑥, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

Fig. 6. Semantics of Arrays

Checks and Type conversions. Figure 7 shows the semantics of dynamic checkers (check, and
check-array) from Section 3. Semantics of type conversion (track, endorse) are in Figure 8.

8

S-check-pass

calc-eps(ae, 𝐷) ≤ 𝑑 ∧ calc-del(ae, 𝐷) ≥ 𝑟

⟨check(ae, d, r), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

S-check-fail

calc-eps(ae, 𝐷) > 𝑑 ∨ calc-del(ae, 𝐷) < 𝑟

⟨check(ae, d, r), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip,⊥, `, 𝐷 ⟩

S-array-check-true

∀𝑖 . 𝐷 [𝑦, 𝑖] .𝜖 ≤ 𝑑 ∧𝐷 [𝑦, 𝑖] .𝛿 ≥ 𝑟

⟨checkArray(y, p), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ⟩, `, 𝐷 ⟩

S-array-check-false

∀𝑖 . 𝐷 [𝑦, 𝑖] .𝜖 > 𝑑 ∧𝐷 [𝑦, 𝑖] .𝛿 < 𝑟

⟨checkArray(y, p), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip,⊥, `, 𝐷 ⟩
Fig. 7. Semantics of Checks

S-track

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥)
⟨𝑛′

𝑏
, ⟨1⟩⟩ = 𝜎 (𝑦) 𝑣 = ℎ [𝑛′

𝑏
]

ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣] 𝐷′ = 𝐷 [𝑥 ↦→ ⟨𝑑, 𝑟 ⟩]

⟨𝑥 = track(y, d, r), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-endorse

⟨𝑛𝑏 , ⟨1⟩⟩ = 𝜎 (𝑥) ⟨𝑛′
𝑏
, ⟨1⟩⟩ = 𝜎 (𝑦)

𝑣 = ℎ [𝑛′
𝑏
] ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣] 𝐷′ = 𝐷 [𝑥 ↦→ ⟨0, 1⟩]

⟨𝑥 = endorse(y), ⟨𝜎,ℎ⟩, `, 𝐷 ⟩ 1−→𝜓 ⟨skip, ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

Fig. 8. Semantics of type conversion

Functions. Diamont can also support functional specifications that bound the error of the output.

We support Chisel style specifications. When such a function call is reached, if the requirements

for the specification is satisfied (rule S-FUNCTION), the uncertainty interval is updated by taking

into account the error confidence in the input parameters along with the guarantee provided by

the specification. If the requirements are not satisfied (rule S-FUNCTION-FAIL), the system throws

an error.

S-Function

𝜓 (𝑓) = ⟨𝑑, 𝑟 ∗ 𝑅 (𝑑1 ≥ Δ(𝑦1), . . . , 𝑑𝑛 ≥ Δ(𝑦𝑛)) ⟩
∀𝑗 = 1 . . . , 𝑛. calc-eps(𝑦 𝑗 , 𝐷) ≤ 𝑑𝑖

⟨𝑓 (𝑦1, . . . , 𝑦𝑛), 𝜎,ℎ⟩w� 𝑣 𝑟 ′ = 𝑟 × calc-del(𝑓 (𝑦1, . . . , 𝑦𝑛), 𝐷)
𝜎 (𝑥) = ⟨𝑛𝑏 , ⟨1⟩⟩ ℎ′ = ℎ [𝑛𝑏 ↦→ 𝑣] 𝐷′ = 𝐷 [𝑦 ↦→ ⟨𝑑, 𝑟 ′⟩]

⟨[𝑥 = 𝑓 (𝑦1, . . . , 𝑦𝑛)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−→𝜓 ⟨[skip]𝛼 , ⟨𝜎,ℎ′⟩, `, 𝐷′⟩

S-Function-Fail

𝜓 (𝑓) = ⟨𝑑, 𝑟 ∗ 𝑅 (𝑑1 ≥ Δ(𝑦1), . . . , 𝑑𝑛 ≥ Δ(𝑦𝑛)) ⟩
∃ 𝑗 = 1 . . . , 𝑛. calc-eps(𝑦 𝑗 , 𝐷) ≥ 𝑑𝑖

⟨[𝑥 = 𝑓 (𝑦1, . . . , 𝑦𝑛)]𝛼 , ⟨𝜎,ℎ⟩, `, 𝐷 ⟩
1−→𝜓 ⟨[skip]𝛼 ,⊥, `, 𝐷′⟩

Fig. 9. Semantics of statically verified functions

Appendix B

B.1 TYPE SYSTEM
Diamont’s type system uses similar type annotations as in Parallely. The type qualifiers explicitly

specify data that may be subject to approximations and data that needs dynamic monitoring. We

use a static type environment Θ : Var ↦→ 𝑇 that maps variables to their type to check type-safety

of statements. We use two type judgments, 1) expressions are assigned a type: Θ ⊢ 𝑒 : 𝑇 , 2)

statements update the type environment: Θ ⊢ 𝑆 : Θ′
.

The type system enforces the following properties.

• approx data is not allowed to flow into precise data.

• dynamic expression can only use dynamic data.

• Data can only be converted to dynamic through the relevant type conversion statements.

• Only precise data can influence the calculation of conditionals, or array indexes

• approx variables can appear in conditional choice statements

TR-Val

type(n) = 𝑡

Θ ⊢ 𝑛 : precise 𝑡

TR-Var

Θ(𝑥) = 𝑇

Θ ⊢ 𝑥 : 𝑇

TR-Iop

Θ ⊢ 𝑒1 : 𝑇 Θ ⊢ 𝑒2 : 𝑇
Θ ⊢ 𝑒1 op 𝑒2 : 𝑇

TR-Iop-approx1

Θ ⊢ 𝑒1 : approx 𝑡
Θ ⊢ 𝑒2 : precise 𝑡

Θ ⊢ 𝑒1 op 𝑒2 : approx 𝑡

TR-Iop-approx2

Θ ⊢ 𝑒1 : precise 𝑡
Θ ⊢ 𝑒2 : approx 𝑡

Θ ⊢ 𝑒1 op 𝑒2 : approx 𝑡

Fig. 10. Types for Integer Expressions

9

10

TR-Var

Θ ⊢ 𝑥 : 𝑞 𝑇

Θ ⊢ 𝑒 : 𝑞 𝑇

Θ ⊢ x = e : Θ, 𝑞

TR-Var-approx

Θ ⊢ 𝑥 : approx 𝑡

Θ ⊢ 𝑒 : precise 𝑡

Θ ⊢ x = e : Θ

TR-Prob-A

Θ ⊢ 𝑒1 : 𝑞 𝑡

Θ ⊢ 𝑒2 : 𝑞′ 𝑡
Θ ⊢ 𝑥 : approx 𝑡

Θ ⊢ x = 𝑒1 [𝑝] 𝑒2 : Θ

TR-ApproxAssign

Θ ⊢ 𝑒1 : 𝑞 𝑡 Θ ⊢ 𝑒2 : 𝑞′ 𝑡
Θ ⊢ 𝑥 : approx 𝑡 Θ ⊢ 𝑏 : 𝑞′′ int

Θ ⊢ x = 𝑒1 [𝑏] 𝑒2 : Θ

TR-SEQ

Θ ⊢ 𝑠1 : Θ′

Θ′ ⊢ 𝑠2 : Θ′′

Θ ⊢ 𝑠1; 𝑠2 : Θ′′

TR-If

Θ ⊢ 𝑏 : precise int

Θ ⊢ 𝑠1 : 𝑇
Θ ⊢ 𝑠2 : 𝑇

Θ ⊢ if b 𝑠1 𝑠2 : Θ

TR-Array-load

∀𝑖 . Θ ⊢ 𝑒𝑖 : precise int
Θ ⊢ 𝑎 : 𝑞 𝑡 [] Θ ⊢ 𝑥 : 𝑞 𝑡

Θ ⊢ 𝑥 = 𝑎[𝑒1 ...𝑒𝑘] : Θ

TR-Array-load2

∀𝑖 . Θ ⊢ 𝑒𝑖 : precise int
Θ ⊢ 𝑎 : 𝑞 𝑡 [] Θ ⊢ 𝑥 : approx 𝑡

Θ ⊢ 𝑥 = 𝑎[𝑒1 ...𝑒𝑘] : Θ

TR-Array-store

∀𝑖 . Θ ⊢ 𝑒𝑖 : precise int
Θ ⊢ 𝑎 : 𝑞 𝑡 []
Θ ⊢ 𝑒 : 𝑞 𝑡

Θ ⊢ 𝑎[𝑒1 ...𝑒𝑘] = e : Θ

TR-Array-store2

∀𝑖 . Θ ⊢ 𝑒𝑖 : precise int
Θ ⊢ 𝑎 : approx 𝑡 []

Θ ⊢ 𝑒 : 𝑞 𝑡

Θ ⊢ 𝑎[𝑒1 ...𝑒𝑘] = e : Θ

TR-Send

Θ ⊢ 𝑦 : 𝑇

Θ ⊢ send(q, T , y) : Θ

TR-Receive

Θ ⊢ 𝑥 : 𝑇

Θ ⊢ 𝑥 = receive(q, T) : Θ

TR-CondSend

Θ ⊢ 𝑦 : approx 𝑡

𝑇 = approx 𝑡

Θ ⊢ cond-send(q, T , y) : Θ

TR-CondReceive

Θ ⊢ 𝑥 : approx 𝑡 𝑇 = approx 𝑡

Θ ⊢ 𝑥 = cond-receive(q, T) : Θ

Fig. 11. Types for Statements

TR-Track

Θ ⊢ 𝑥 : dynamic 𝑡

Θ ⊢ 𝑦 : approx 𝑡 ∨ Θ ⊢ 𝑦 : precise 𝑡

Θ ⊢ x = track(y, p) : Θ

TR-Check

Θ ⊢ 𝑦 : dynamic 𝑡

Θ ⊢ check(y, p) : Θ

TR-CheckArray

Θ ⊢ 𝑦 : dynamic 𝑡 []
Θ ⊢ checkArray(y, p) : Θ, dynamic

TR-Prob-D

Θ ⊢ 𝑒1 : dynamic 𝑡 Θ ⊢ 𝑒2 : 𝑞 𝑡

Θ ⊢ 𝑥 : dynamic 𝑡

Θ ⊢ x = 𝑒1 [𝑝] 𝑒2 : Θ

TR-COND-D

Θ ⊢ 𝑒1 : dynamic 𝑡 Θ ⊢ 𝑒2 : dynamic 𝑡

Θ ⊢ 𝑥 : dynamic 𝑡 Θ ⊢ 𝑥 : dynamic 𝑡

Θ ⊢ x = 𝑏? 𝑒1 : 𝑒2 : Θ

TR-DynSend

Θ ⊢ 𝑦 : dynamic 𝑡

𝑇 = dynamic 𝑡

Θ ⊢ dyn-send(q, T , y) : Θ

TR-DynReceive

Θ ⊢ 𝑥 : dynamic 𝑡 𝑇 = dynamic 𝑡

Θ ⊢ 𝑏 : dynamic int

Θ ⊢ 𝑏, 𝑥 = dyn-receive(q, T) : Θ

TR-Array-load

∀𝑖 . Θ ⊢ 𝑒𝑖 : precise int
Θ ⊢ 𝑎 : 𝑞 𝑡 [] Θ ⊢ 𝑥 : 𝑞 𝑡

Θ ⊢ 𝑥 = 𝑎[𝑒1 ...𝑒𝑘] : Θ

TR-Array-store

∀𝑖 . Θ ⊢ 𝑒𝑖 : precise int
Θ ⊢ 𝑎 : 𝑞 𝑡 [] Θ ⊢ 𝑒 : 𝑞 𝑡

Θ ⊢ 𝑎[𝑒1 ...𝑒𝑘] = e : Θ

TR-If

Θ ⊢ 𝑏 : precise int Θ ⊢ 𝑠1 : 𝑇
Θ ⊢ 𝑠2 : 𝑇

Θ ⊢ if b 𝑠1 𝑠2 : Θ

Fig. 12. Types for Statements (dynamic)

Appendix C

C.1 REWRITE RULES
We present the new rewrite rules for the Diamont language. The remaining rewrite rules are from

Parallely [3].

R-CONDSEND

𝒮 |= 𝑥 = 𝛽 Γ [𝛼, 𝛽, 𝑡] =𝑚 Γ′ = Γ [𝛼, 𝛽, 𝑡 ↦→𝑚 + +𝑦]
Γ,𝒮, [cond-send(x, t, y)]𝛼 {𝜓 Γ′,𝒮, skip

R-CONDRECEIVE

𝒮 |= 𝑥 = 𝛼 Γ [𝛼, 𝛽, 𝑡] = 𝑦 ::𝑚 Γ′ = Γ [𝛼, 𝛽, 𝑡 ↦→𝑚]
𝒮′ = [𝛽 .y = 𝛼.𝑦 [𝜓 (𝛼, 𝛽, 𝑡)] 𝛽.𝑦]𝛽

Γ,𝒮, [y = cond-receive(x, t)]𝛽 {𝜓 Γ′,𝒮 ;𝒮′, skip

R-DYNSEND

𝒮 |= 𝑥 = 𝛽 Γ [𝛼, 𝛽, 𝑡] =𝑚 Γ′ = Γ [𝛼, 𝛽, 𝑡 ↦→𝑚 + +𝑦]
Γ,𝒮, [dyn-send(x, t, y)]𝛼 {𝜓 Γ′,𝒮, skip

R-DYNRECEIVE

𝒮 |= 𝑥 = 𝛼 Γ [𝛼, 𝛽, 𝑡] = 𝑦 ::𝑚 Γ′ = Γ [𝛼, 𝛽, 𝑡 ↦→𝑚]
𝒮′ = [𝛽 .y = 𝛼.𝑦 [𝜓 (𝛼, 𝛽, 𝑡)] 𝛽.𝑦]𝛽

Γ,𝒮, [y = dyn-receive(x, t)]𝛽 {𝜓 Γ′,𝒮 ;𝒮′, skip

R-COMMONREPEAT

𝒮 |= 𝑁 = 𝑀 Γ,𝒮, [𝑆0]𝛼 ∥ [𝑆1]𝛽 {𝜓 Γ,𝒮 ;𝒮′, skip

Γ,𝒮, [repeat N 𝑆0]𝛼 ∥ [repeat M 𝑆1]𝛽 {𝜓 Γ,𝒮 ; repeat N {𝒮′ }, skip

Fig. 13. Rewrite Rules

C.2 REWRITE RULE SOUNDNESS
Lemma 1. If Γ,𝒮, 𝑃 { Γ′,𝒮 ;𝒮 ′, 𝑃 ′ then Γ,𝒮, 𝑃 ⊑ Γ′,𝒮 ;𝒮 ′, 𝑃 ′

Proof: The proof is by induction on the derivation of Γ,𝒮, 𝑃 { Γ′,𝒮 ;𝒮 ′, 𝑃 ′
. Each rewrite rule

has a seperate case. Below are the cases for the new rewrite rules:

Case R-DynSend:
Let (𝜖, `, 𝜔) ∈ ⟦𝒮, Γ⟧∅ and assume

(𝜖, `, 𝜔, [dyn-send(x, t, y)]𝛼 ⋉ 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
dyn-send is a left mover (proof is same as the proof that cond-send is a left mover), therefore

(𝜖, `, 𝜔, [dyn-send(x, t, y)]𝛼 ; 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)

11

12

Suppose 𝜖 (𝑥) = 𝛽 . By the R-DynSend rewrite step, Γ′ = Γ [(𝛼, 𝛽, 𝑡) ↦→ Γ(𝛼, 𝛽, 𝑡) + +𝑦] and
𝒮 ′ = skip. Suppose (𝜖 ′, ` ′, 𝜔 ′) ∈ ⟦𝒮 ;𝒮 ′, Γ′⟧∅. Then 𝜖 ′ = 𝜖 , 𝜔 ′ = 𝜔 , and ` ′ = ` [(𝛼, 𝛽, 𝑡) ↦→
` (𝛼, 𝛽, 𝑡) + +𝑚] [(𝛼, 𝛽, 𝐷𝑡) ↦→ ` (𝛼, 𝛽, 𝐷𝑡) + +𝑑], where 𝑑 = 𝜔 (𝑦) and𝑚 is either 𝜖 (𝑦) or ∅.
Suppose the send succeeds. Then by semantic rule E-DynSend-True and E-CondSend-True,

(𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ ` (𝛼, 𝛽, 𝑡) + +𝜖 (𝑦)] [(𝛼, 𝛽, 𝐷𝑡) ↦→ ` (𝛼, 𝛽, 𝐷𝑡) + +𝑑], 𝜔, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
Suppose the send fails. Then by semantic rule E-DynSend-False and E-CondSend-False,

(𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ ` (𝛼, 𝛽, 𝑡) + +∅][(𝛼, 𝛽, 𝐷𝑡) ↦→ ` (𝛼, 𝛽, 𝐷𝑡) + +𝑑], 𝜔, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
that is,

(𝜖 ′, ` ′, 𝜔 ′, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
Therefore, (𝜖, `, 𝜔, [dyn-send(x, t, n)]𝛼 ⋉ 𝑃𝑥) ⊑ (𝜖 ′, ` ′, 𝜔 ′, 𝑃𝑥).
Case R-CondSend:
This proof is similar to the R-DynSend proof. The main differences are that the dyn-send is

replaced with a cond-send, the dynamic channel is untouched, and the semantics do not step

through the E-DynSend-True or E-DynSend-False rules.

Case R-DynReceive:
Let (𝜖, `, 𝜔) ∈ ⟦𝒮, Γ⟧∅ and assume

(𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ⋉ 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
dyn-receive is a left mover (proof is same as the proof that cond-receive is a left mover), therefore

(𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ; 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
Suppose 𝜖 (𝑥) = 𝛼 . By the R-DynReceive rewrite step, Γ′ = Γ [(𝛼, 𝛽, 𝑡) ↦→ pop(Γ(𝛼, 𝛽, 𝑡))] and

𝒮 ′ = [𝛽.𝑦 = 𝛼.𝑦 [𝜓 (𝛼, 𝛽, 𝑡)] 𝛽.𝑦] when head(Γ(𝛼, 𝛽, 𝑡)) = 𝑦. Suppose (𝜖 ′, ` ′, 𝜔 ′) ∈ ⟦𝒮 ;𝒮 ′, Γ′⟧∅.
Then ` ′ = ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))] and 𝜔 ′ = 𝜔 [𝛽.𝑦 ↦→ 𝑑]
where 𝑑 = get-dyn-rec(head(` (𝛼, 𝛽, 𝐷𝑡)),𝜓 (𝛼, 𝛽, 𝑡)). Further, either 𝜖 ′ = 𝜖 [𝛽.𝑦 ↦→ 𝛼.𝑦] when
head(` (𝛼, 𝛽, 𝑡)) = 𝛼.𝑦 or 𝜖 ′ = 𝜖 when head(` (𝛼, 𝛽, 𝑡)) = ∅.

Suppose the send succeeded. Then by semantic rule E-DynReceive-True and E-CondReceive-True,

(𝜖 [𝛽.𝑦 ↦→ 𝛼.𝑦], ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))], 𝜔 [𝛽.𝑦 ↦→ 𝑑], 𝑃𝑥)
→∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)

Suppose the send failed. Then by semantic rule E-DynReceive-False and E-CondReceive-False,

(𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))], 𝜔 [𝛽.𝑦 ↦→ 𝑑], 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
that is,

(𝜖 ′, ` ′, 𝜔 ′, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
Therefore, (𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ⋉ 𝑃𝑥) ⊑ (𝜖 ′, ` ′, 𝜔 ′, 𝑃𝑥).
Case R-CondReceive:
This proof is similar to the R-DynReceive proof. The main differences are that the dyn-receive is

replaced with a cond-receive, the dynamic channel is untouched, and the semantics do not step

through the E-DynReceive-True or E-DynReceive-False rules.

Appendix C 13

Case R-CommonRepeat:
Since the rewrite rule ensures that 𝑁 and 𝑀 are the same, this proof refers to both as 𝑁 . The

proof for this case is by induction on 𝑁 , the number of repetitions.

Suppose 𝑁 = 1. Then,

[repeat N 𝑆0]𝛼 ∥ [repeat N 𝑆1]𝛽 ≡ [𝑆0]𝛼 ∥ [𝑆1]𝛽
which can be rewritten to 𝒮 ′

, which is equivalent to repeat N {𝒮 ′}.
Suppose 𝑁 > 1. Then,

[repeat N 𝑆0]𝛼 ∥ [repeat N 𝑆1]𝛽 ≡ [𝑆0; repeat N-1 𝑆0]𝛼 ∥ [𝑆1; repeat N-1 𝑆1]𝛽
by inductive hypothesis, this can be rewritten to 𝒮 ′

; repeat N-1 {𝒮 ′}, which is equivalent to

repeat N {𝒮 ′}.
Transitions to Error States:
Some statements, such as function calls and check statements, can make the parallel program

transition to an error state. This happens if 1) the input to a function does not satisfy its function

specification, 2) a check fails for a variable or a checkarray fails for an element of an array. In

such cases, using the inductive hypothesis, we can say that if such a failure occurs in the parallel

program, it will also occur in the sequential program.

Lemma 2. If Γ,𝒮, 𝑃 { Γ′,𝒮 ;𝒮 ′, 𝑃 ′ then Γ,𝒮, 𝑃 ⊒ Γ′,𝒮 ;𝒮 ′, 𝑃 ′

Proof: The proof is by induction on the derivation of Γ,𝒮, 𝑃 { Γ′,𝒮 ;𝒮 ′, 𝑃 ′
. Each rewrite rule

has a seperate case. Below are the cases for the new rewrite rules:

Case R-DynSend:
Let (𝜖 ′, ` ′, 𝜔 ′) ∈ ⟦𝒮 ;𝒮 ′, Γ′⟧∅ and assume

(𝜖 ′, ` ′, 𝜔 ′, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
By the R-DynSend rewrite step, Γ′ = Γ [(𝛼, 𝛽, 𝑡) ↦→ Γ(𝛼, 𝛽, 𝑡) + +𝑦] and 𝒮 ′ = skip. Suppose

(𝜖, `, 𝜔) ∈ ⟦𝒮, Γ⟧∅. Then 𝜖 ′ = 𝜖 , 𝜔 ′ = 𝜔 , and ` ′ = ` [(𝛼, 𝛽, 𝑡) ↦→ ` (𝛼, 𝛽, 𝑡) + +𝑚] [(𝛼, 𝛽, 𝐷𝑡) ↦→
` (𝛼, 𝛽, 𝐷𝑡) + +𝑑], where 𝑑 = 𝜔 (𝑦) and𝑚 is either 𝜖 (𝑦) or ∅. Therefore,

(𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ ` (𝛼, 𝛽, 𝑡) + +𝑚] [(𝛼, 𝛽, 𝐷𝑡) ↦→ ` (𝛼, 𝛽, 𝐷𝑡) + +𝑑], 𝜔, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
by semantic rule E-DynSend-True and E-CondSend-True or E-DynSend-False and E-CondSend-

False (depending on𝑚),

(𝜖, `, 𝜔, [dyn-send(x, t, y)]𝛼 ; 𝑃𝑥)
𝛼−→ (𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ ` (𝛼, 𝛽, 𝑡)++𝑚] [(𝛼, 𝛽, 𝐷) ↦→ ` (𝛼, 𝛽, 𝐷)++𝑑], 𝜔, 𝑃𝑥)

Therefore,

(𝜖, `, 𝜔, [dyn-send(x, t, y)]𝛼 ; 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
since dynsend is a left mover,

(𝜖, `, 𝜔, [dyn-send(x, t, y)]𝛼 ⋉ 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
Case R-CondSend:
This proof is similar to the R-DynSend proof. The main differences are that the dyn-send is

replaced with a cond-send, the dynamic channel is untouched, and the semantics do not step

through the E-DynSend-True or E-DynSend-False rules.

14

Case R-DynReceive:
Let (𝜖 ′, ` ′, 𝜔 ′) ∈ ⟦𝒮 ;𝒮 ′, Γ′⟧∅ and assume

(𝜖 ′, ` ′, 𝜔 ′, 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
By the R-DynReceive rewrite step, Γ′ = Γ [(𝛼, 𝛽, 𝑡) ↦→ pop(Γ(𝛼, 𝛽, 𝑡))] and 𝒮 ′ = [𝛽.𝑦 =

𝛼.𝑦 [𝜓 (𝛼, 𝛽, 𝑡)] 𝛽.𝑦] when head(Γ(𝛼, 𝛽, 𝑡)) = 𝑦. Then ` ′ = ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→
pop(` (𝛼, 𝛽, 𝐷𝑡))] and 𝜔 ′ = 𝜔 [𝛽.𝑦 ↦→ 𝑑] where 𝑑 = get-dyn-rec(head(` (𝛼, 𝛽, 𝐷𝑡)),𝜓 (𝛼, 𝛽, 𝑡)).
Further, either 𝜖 ′ = 𝜖 [𝛽.𝑦 ↦→ 𝛼.𝑦] when head(` (𝛼, 𝛽, 𝑡)) = 𝛼.𝑦 or 𝜖 ′ = 𝜖 when head(` (𝛼, 𝛽, 𝑡)) = ∅.

Suppose the send succeeded.

(𝜖 [𝛽.𝑦 ↦→ 𝛼.𝑦], ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))], 𝜔 [𝛽.𝑦 ↦→ 𝑑], 𝑃𝑥)
→∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)

by semantic rule E-DynReceive-True and E-CondReceive-True,

(𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ; 𝑃𝑥)
𝛽
−→

(𝜖 [𝛽.𝑦 ↦→ 𝛼.𝑦], ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))], 𝜔 [𝛽.𝑦 ↦→ 𝑑], 𝑃𝑥)
Suppose the send failed.

(𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))], 𝜔 [𝛽.𝑦 ↦→ 𝑑], 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
by semantic rule E-DynReceive-False and E-CondReceive-False,

(𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ; 𝑃𝑥)
𝛽
−→

(𝜖, ` [(𝛼, 𝛽, 𝑡) ↦→ pop(` (𝛼, 𝛽, 𝑡))] [(𝛼, 𝛽, 𝐷𝑡) ↦→ pop(` (𝛼, 𝛽, 𝐷𝑡))], 𝜔 [𝛽.𝑦 ↦→ 𝑑], 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
therefore,

(𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ; 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
since dynreceive is a left mover,

(𝜖, `, 𝜔, [𝑦 = dyn-receive(x, t)]𝛽 ⋉ 𝑃𝑥) →∗ (𝜖𝑓 , ` 𝑓 , 𝜔 𝑓 , 𝐻)
Case R-CondReceive:
This proof is similar to the R-DynReceive proof. The main differences are that the dyn-receive is

replaced with a cond-receive, the dynamic channel is untouched, and the semantics do not step

through the E-DynReceive-True or E-DynReceive-False rules.

Case R-CommonRepeat:
This proof is similar to the R-CommonRepeat proof for Lemma 1.

Transitions to Error States:
Some statements, such as function calls and check statements, can make the parallel program

transition to an error state. In such cases, using the inductive hypothesis, we can say that if such a

failure occurs in the sequential program, it will also occur in the parallel program.

Corollary 1 (Deadlock-Freedom of Seqentializable Programs). If a parallel program 𝑃

can be sequentialized to 𝒮 , then 𝑃 is deadlock free.

Corollary 1 is proved in [1].

Appendix D

D.1 SOUNDNESS OF THE RUNTIME
We first define basic definitions that give a semantic meaning to the uncertainty intervals. We

extend the notion from Rely [2] in this semantics for intermediate states of execution of statements.

D.1.1 Big Step Notation.
Definition 1 (Partial Trace Semantics for Parallel Programs).

⟨𝑠, 𝜖, 𝜔⟩
𝜏, 𝑝
=⇒𝜓 ⟨𝑠 ′, 𝜖 ′, 𝜔 ′⟩ ≡ ⟨𝜖, 𝜔, ., 𝑠⟩

_1, 𝑝1−→𝜓 . . .
_𝑛, 𝑝𝑛−→ 𝜓 ⟨𝜖 ′, 𝜔 ′, ., 𝑠 ′⟩

This big-step semantics is a reflexive transitive closure of the small-step global semantics for

programs and records a trace of the program. A trace 𝜏 ∈ 𝑇 → ·|𝛼 :: 𝑇 is a sequence of small step

global transitions. The probability of the trace is the product of the probabilities of each transition.

We only consider the environment and ignore differences in the message channels for this definition

as we are concerned about differences in environment for programs.

Definition 2 (Aggregate Semantics for Parallel Programs).

⟨𝑠, 𝜖, 𝜔⟩
𝑝
=⇒𝜓 ⟨𝑠 ′, 𝜖 ′, 𝜔 ′⟩ where 𝑝 =

∑
𝜏 ∈T

𝑝𝜏 such that ⟨𝑠, 𝜖, 𝜔⟩
𝜏, 𝑝𝜏
=⇒𝜓 ⟨𝑠 ′, 𝜖 ′, 𝜔 ′⟩

The big-step aggregate semantics enumerates over the set of all finite length traces and sums the

aggregate probability that a program starts in an environment 𝜖 and terminates in an environment 𝜖 ′.
This accumulates the probability over all possible interleavings that end up in the same final state.

Paired Execution Semantics. For reliability and accuracy analysis we define a paired execution
semantics that pairs an original (exact) execution of a program with an approximate execution,

expanding the definition from Rely.

Definition 3 (Paired Execution Semantics).

⟨𝑠, ⟨𝜖, 𝜔, 𝜑⟩⟩ ⇓ ⟨𝑠 ′, ⟨𝜖 ′, 𝜔 ′, 𝜑 ′⟩⟩ such that ⟨𝑠, 𝜖, 𝜔⟩
𝜏, 𝑝
=⇒

1𝜓 ⟨𝑠 ′, 𝜖 ′, 𝜔 ′⟩ and

𝜑 ′(𝜖 ′𝑎) =
∑

𝜖𝑎 ∈ Env
𝜑 (𝜖𝑎) · 𝑝𝑎 where ⟨𝑠, 𝜖𝑎, 𝜔⟩

·,𝑝𝑎
=⇒𝜓 ⟨𝑠 ′, 𝜖 ′, 𝜔 ′⟩

This relation states that from a configuration ⟨𝜖, 𝜔, 𝜑⟩ consisting of an environment 𝜖 , dynamic

map 𝜔 and an environment distribution 𝜑 ∈ Φ, the paired execution yields a new configuration

⟨𝜖 ′, 𝜔 ′, 𝜑 ′⟩. The environments 𝜖 and 𝜖 ′ and the dynamic maps 𝜔 and 𝜔 ′
are related by the fully

deterministic execution (1𝜓). The distributions 𝜑 and 𝜑 ′
are probability mass functions that map an

environment to the probability that the execution is in that state. In particular, 𝜑 is a distribution

on states before the execution of 𝑠 whereas 𝜑 ′
is the distribution on states after executing 𝑠 .

We use the syntax from [5] for accuracy predicates. Extended Reliability Predicates. A predi-

15

16

cate 𝑄 has the following form:

𝑄𝐴 := 𝑑 ≥ 𝐴𝑒 | 𝑄𝐴 ∧𝑄𝐴 | True | False
𝐴𝑒 := 𝑑 | 𝑑 · Δ(𝑜) | 𝐴𝑒 +𝐴𝑒

An accuracy predicate 𝑄𝐴 is a conjunct of accuracy predicates or a comparison between a

numerical constant and a Accuracy expression𝐴𝑒 . An accuracy expression can be a constant term d

∈ R, or a product of a constant an a distance. A distance operator Δ(𝑜) relates the values of operand
𝑜 in an exact and approximate run.

Accuracy of variables. We now define the semantics of accuracy by following the exposition

by [5]. The accuracy of a variables is defined using the environment distributions. The denotation of

a accuracy predicate ⟦𝑄𝐴⟧ ∈ 𝒫 (𝐸𝑛𝑣 × Φ) is the set of environment and environment distribution

pairs that satisfy the predicate.

The denotation ofℛ∗ [𝑄𝐴] is the probability that an environment 𝜖𝑎 sampled from Φ satisfied

𝑄𝐴:

⟦ℛ∗ [𝑄𝐴]⟧(𝜖, 𝜑) = ∑
𝜖𝑢 ∈ℰ (𝑄𝐴,𝜖) 𝜑 (𝜖𝑢)

where, ℰ (𝑂, 𝜖) is the set of all environments in which 𝑄𝐴 is satisfied.

ℰ (𝑂, 𝜖) = {𝜖 ′ | 𝜖 ′ ∈ 𝐸𝑛𝑣 ∧ 𝜖 ′ ∈ ⟦𝑄𝐴⟧}

Precondition Generator for static analysis.

𝐶 (𝑥 = 𝑒, 𝑄) = let 𝑄 ′
𝐴 = 𝑄𝐴 [𝐴𝐸 (𝑒)/Δ(𝑥)] in 𝑄 [ℛ∗ [𝑄 ′

𝑎]/ℛ∗ [𝑄𝑎]]
𝐶 (𝑥 = 𝑒1 [𝑟] 𝑒2, 𝑄) = let 𝑄 ′

𝐴 = 𝑄𝐴 [𝐴𝐸 (𝑒1)/Δ(𝑦)] in 𝑄 [𝑟 ∗ℛ∗ [𝑄 ′
𝑎]/ℛ∗ [𝑄𝑎]]

D.2 SOUNDNESS.
Lemma 3 (Probability calculation for expressions). For any operation ⊕ ∈ {+,−, ∗, /}

assuming maximum error of any expression AE(𝑥 ⊕ 𝑦) is correctly calculated using maximum error of
x and y x.𝜖 and y.𝜖 ,

⟦ℛ∗ [Δ(𝑥⊕𝑦) ≤ AE(𝑥⊕𝑦)]⟧(𝜖, 𝜑) ≥ ⟦ℛ∗ [Δ(𝑥) > 𝑥 .𝜖]⟧(𝜖, 𝜑) + ⟦ℛ∗ [Δ(𝑦) > 𝑦.𝜖]⟧(𝜖, 𝜑) − 1

Proof. By definition, ⟦ℛ∗ [Δ(𝑥 ⊕ 𝑦) ≤ AE(𝑥 ⊕ 𝑦)]⟧(𝜖, 𝜑) = ∑
𝜖𝑢 ∈ℰ (𝐴𝐸,𝜖) 𝜑 (𝜖𝑢)

Since we assume the maximum error AE(𝑥 ⊕𝑦) is calculated correctly based on the maximum error

of x and y, For the error of the result to exceed AE(𝑥 ⊕ 𝑦), either x or y must have had an error

bigger than x.𝜖 or y.𝜖 . The probability of that occurring is

𝑃 (𝑥 .𝜖 > Δ(𝑥)) = 1−⟦ℛ∗ [Δ(𝑥) > 𝑥 .𝜖]⟧(𝜖, 𝜑) and 𝑃 (𝑦.𝜖 > Δ(𝑦)) = 1−⟦ℛ∗ [Δ(𝑦) > 𝑦.𝜖]⟧(𝜖, 𝜑).

Therefore, 1 − ⟦ℛ∗ [Δ(𝑥 ⊕ 𝑦)] ≤ AE(𝑥 ⊕ 𝑦)⟧ = 𝑃 (𝑥 .𝜖 > Δ(𝑥) ∪ 𝑦.𝜖 > Δ(𝑦))

From the union bound, 1 − ⟦ℛ∗ [Δ(𝑥 ⊕ 𝑦)] ≤ AE(𝑥 ⊕ 𝑦)⟧ ≤ 𝑃 (𝑥 .𝜖 > Δ(𝑥)) + 𝑃 (𝑦.𝜖 > Δ(𝑦)))

1−ℛ∗ [Δ(𝑥 ⊕𝑦) ≤ AE(𝑥 ⊕𝑦)] ≤ 1−⟦ℛ∗ [Δ(𝑥) > 𝑥 .𝜖]⟧(𝜖, 𝜑) + 1−⟦ℛ∗ [Δ(𝑦) > 𝑦.𝜖]⟧(𝜖, 𝜑)

Therefore,

⟦ℛ∗ [Δ(𝑥 ⊕𝑦) ≤ AE(𝑥 ⊕𝑦)]⟧(𝜖, 𝜑) ≥ ⟦ℛ∗ [Δ(𝑥) > 𝑥 .𝜖]⟧(𝜖, 𝜑) +⟦ℛ∗ [Δ(𝑦) > 𝑦.𝜖]⟧(𝜖, 𝜑) − 1 □

Appendix D 17

Theorem 1 (Soundness of dynamic monitoring for seqential programs).

For all statements 𝑠 , and for all variables 𝑥 s.t. Θ ⊢ 𝑥 : dynamic 𝑡 ,
Θ ⊢ 𝑠 : Θ′ and ⟨𝑠, ⟨𝜖, 𝜔, 𝜑⟩⟩ ⇓ ⟨𝑠 ′, ⟨𝜖 ′, 𝜔 ′, 𝜑 ′⟩⟩ =⇒ ⟦ℛ∗ [𝜔 ′[𝑥] .𝜖 ≥ Δ(𝑥)] ⟧(𝜖 ′, 𝜑 ′) ≥ 𝜔 ′[𝑥] .𝛿

We will now show here intuition behind the proof of Theorem 2 for the case of expression assign-

ment.

Proof. Induction on k, the length of the trace from 𝑠 to 𝑠 ′. If k = 0, theorem holds as 𝜔 is

initialized to be ⟨0, 1⟩ for all dynamically monitored variables.

Assume true for n, ⟨𝑠, ⟨𝜖, 𝜔, 𝜑⟩⟩ ⇓ ⟨𝑠𝑛, ⟨𝜖𝑛, 𝜔𝑛, 𝜑𝑛⟩⟩
and ∀𝑥,Θ ⊢ 𝑥 : dynamic 𝑡 =⇒ ⟦ℛ∗ [𝜔𝑛 [𝑥] .𝜖 ≥ Δ(𝑥)]⟧(𝜖𝑛, 𝜑𝑛) ≥ 𝜔 [𝑥]

We will now argue over all possible ways of taking the n+1 th step.

⟨𝑠𝑛, ⟨𝜖𝑛, 𝜔𝑛, 𝜑𝑛⟩⟩ ⇓ ⟨𝑠𝑛+1, ⟨𝜖𝑛+1, 𝜔𝑛+1, 𝜑𝑛+1⟩⟩ due to a process taking the step ⟨𝜖𝑛, `𝑛, 𝐷𝑛, 𝑠𝑛⟩
𝛼,𝑝
−→1𝜓

⟨𝜖𝑛+1, `𝑛+1, 𝐷𝑛+1, 𝑠𝑛+1⟩
Case S-Assign-Dyn 𝑠 : 𝑦 = 𝑒;

From the definition of this rule we can see that only the variable assigned to in the statement

changes in the environment. The maximum error and error confidence of all the other variables

remain the same and the property follows from the inductive hypothesis.

We need to show that the theorem holds if the assigned variable is typed dynamic,

By definition, ⟦ℛ∗ [𝜔 ′[𝑦] .𝜖 ≥ Δ(𝑦)]⟧(𝜖𝑛+1, 𝜑𝑛+1) = ∑
𝜖𝑢 ∈ℰ (𝜔′ [𝑦] .𝜖≥Δ(𝑦),𝜖𝑛+1) 𝜑

𝑛+1 (𝜖𝑢)

The subset of correct executions is a subset of all executions that end up at states equivalent to

𝜖𝑛+1 (ℰ (𝜔 ′[𝑦] .𝜖 ≥ Δ(𝑦), 𝜖𝑛+1)).
In Diamont, assignment is deterministic. Therefore the maximum error that 𝑦 can accumulate is

determined through the errors in the variables used in the expression 𝑒 . We calculate this based on

the calc-acc(e,D) function defined in Figure 5. The soundness of the calculation has been proven

in prior work [4].

Therefore we assume the error is calculated correctly and look at the probability of the execution

ending up at states where the error is within the calculated bound.

As the system type checked we know that only dynamic typed variables or precise typed

variables are used in 𝑒 . Precise typed variables do not contribute any error. From the inductive

hypothesis, we assume that the maximum error of the dynamic typed variables are calculated

correctly.

The probability that the error exceeding the bound is calculated as the probability that the error

of any variable in 𝑒 exceeding their maximum error. We show the correctness of our calculation in

Lemma 3.

Case S-Assign-Prob-Dyn-True, S-Assign-Prob-Dyn-False S : 𝑦 = 𝑒1 [𝑟]𝑒2

Similar to above, from the definition of semantics we know that only the variable assigned to in

the statement changes in the environment. The reliability of all the others remain the same and the

property follows from the inductive hypothesis.

If the assigned variable is typed dynamic, A precise execution result in the variable 𝑦 having

the value of 𝑒1. Therefore we know that the maximum error 𝑦 can have in a correct execution is

the error from 𝑒1 which we calculate similar to the above case.

But in this statement the assignment is not deterministic. Therefore the error confidence of 𝑦 is

the probability that 𝑒1 was executed and that the error in 𝑒1 is within bounds. As these two events

18

are independent we can multiply the relevant probabilities to calculate the error confidence.

Case S-If-True, S-IF-False As the program type checked only precise values are allowed in the

conditionals. Therefore they do not introduce any relative error from a precise execution. In addition,

the environment does not change, therefore the runtime does not need to update the Dynamic map.

Case S-Array-Store, S-Array-Load: as Θ ⊢ 𝑠 : Θ′
, the array indexes are calculated using precise

values. Therefore the reliability only depend on the data on the array location being accessed.

Therefore the dynamic map is set according to the value mapping to that location. The property

follows from the inductive hypothesis.

Case S-Dbl-To-Float: We calculate the maximum error based on the error of the value being

cast-ed as shown in calc-casting-error (x ,v ,D) function. As casting is assumed to be done

deterministic, the error confidence is the same as that of the cast-ed value.

We have shown the soundness of the approach for all sequential programs that can be completely

rewritten to a sequential program. We can then extend this proof to hold on parallel programs using

Theorem 2, because: 1) checks in Diamont are process local properties (depend only on the local

state of a process). 2) If a parallel program can be sequentialized, the analysis of the sequentialized

program will also be valid in the parallel program as shown in [3]. Therefore, for parallel programs

that have a canonical sequentialization in Diamont, our analysis is sound.

□

Extending to Dynamic Conditionals. Our proof can be extended to the dynamic conditionals

as well. We present the intuition here in service of saving space.

Case S-Assign-Cond-Dyn-True, S-Assign-Cond-Dyn-False: Note that the T-COND-D rule en-

sures that every part of the statement has the dynamic type. In addition, this statement cannot

lead to any control flow divergence as the updated value id dynamic typed. In both cases we can

guarantee that the entire interval satisfies (or fails) the condition. In this situation, the maximum

error is guaranteed to be the error from the relevant expression. But our confidence in the relevant

errors depend on the confidence in the Boolean guard expression error. As the statement it self

cannot add any error we can consider this to be a probabilistic choice bound by the error in the

guard.

Case S-Assign-Cond-Dyn-Unknown-True, S-Assign-Cond-Dyn-Unknown-False: This case
is similar to the above, but the entirety of the interval does not satisfy the guard. Therefore we

over-approximate the error as the maximum possible deviation similar to many static analyses

Appendix D 19

D.2.1 Array Optimization
Keeping track of the dynamic uncertainty intervals and communicating them across process

boundaries can incur significant overheads, especially when communicating large arrays as the

interval of each array element needs to be sent along with the array values. One way to reduce

this overhead is to communicate one single conservative approximation of the interval of each

individual array member. Therefore, we calculate the maximum error interval of the array elements

and communicate that single value along with the array members.

In Diamont communication of arrays is handled by converting them to a set of send and receive

statements for each array element. The following figure shows how Diamont de-sugars array

communication into a set of sends and receives. Based on the semantics of communicating

dynamic values, they are sent on the dynamic channel.

dyn-send(𝛽, dynamic t[], a);

[]
𝛼

∥ ar = dyn-receive(𝛼, dynamic t[]);

[]
𝛽

⇓
repeat length(a) {

dyn-send(𝛽, dynamic t, a[temp]);

temp = temp + 1;

}

𝛼 ∥

repeat length(ar) {

ar[temp] = dyn-receive(𝛼, dynamic t);

temp = temp + 1;

}

𝛽

Fig. 14. Array Communication in Diamont.

the sequentialized version of this communication pattern converts it into a traversal of the array

copying each element (the lengths of the two arrays need to be the same and this needs to be

verifiable at sequentialization). Based on the semantics of assignment the dynamically monitored

interval of ar elements is updated at each assignment.

precise int 𝛽.temp = 0;

precise int 𝛼.temp = 0;

repeat length(ar) {

ar[𝛽.temp] = a[𝛼.temp] [𝜓(𝛼,𝛽, dynamic t)] ar[𝛽.temp];

𝛽.temp = 𝛽.temp + 1;

𝛼.temp = 𝛼.temp + 1;

}

𝑠𝑒𝑞
Fig. 15. Sequentialized Form of Array Communication in Diamont.

Our optimization changes the de-sugaring step of the send statement to do the following

steps: 1) convert all dynamic typed data to approx type using endorse statements, 2) calculate the

maximum error and minimum reliability of the array elements by looking up the relevant entries

in the dynamic map, 3) send the values of the array using the approx channel, and 4) send the

calculated interval value on the precise channel.

It changes the de-sugaring step of the receive statement to do the following steps: 1) receive

each element of the array, and convert them to dynamic type using the track statements, 2) receive

the dynamic reliability, 3) Update the dynamic map to the received dynamic property.

20

dyn-send(𝛽, dynamic t[], a);

[]
𝛼

∥ ar = dyn-receive(𝛼, dynamic t[]);

[]
𝛽

⇓

precise int temp = 0;

repeat length(a) {

cond-send(𝛽, dynamic int, a[temp]);

temp = temp + 1;

interval = rdDyn((a, temp))

r_min, d_max = // calculate the interval

}

send(𝛽, D, <d_max, r_min>);

𝛼
∥

approx int prec;

precise int temp = 0;

precise float64 r_min;

repeat length(ar) {

prec = cond-receive(𝛼, dynamic int);

ar[temp] = track(prec, 0, 1);

temp = temp + 1;

}

r_min = receive(𝛼, D);

d_max = receive(𝛼, D);

r_temp = get-dyn-rec(r_min, 𝜓(𝛼,𝛽,int));

temp = 0;

repeat length(ar) {

ar[temp] = track(ar[temp], d_max, r_temp);

temp = temp + 1;

}

𝛽
Fig. 16. Optimized Array Communication in Diamont.

This form of communication generates the following sequentialization.

approx int 𝛽.prec;

precise int 𝛽.temp = 0;

precise int 𝛼.temp = 0;

precise float64 𝛽.r_min = 1;

precise float64 𝛽.d_max = 0;

precise float64 𝛼.r_min;

repeat length(a) {

𝛽.prec = 𝛼.a[temp] [𝜓(𝛼, 𝛽, dynamic int)] 𝛽.prec

ar[𝛽.temp] = track(𝛽.prec, 0, 1);

𝛼.interval = rdDyn((𝛼.a, 𝛼.temp))

if 𝛼.r_min > 𝛼.interval[0] then {

𝛼.r_min = 𝛼.interval[0];

};

if 𝛼.d_max < 𝛼.interval[1] then {

𝛼.r_min = 𝛼.interval[1];

};

𝛽.temp = 𝛽.temp + 1;

𝛼.temp = 𝛼.temp + 1;

}

𝛽.r_min = 𝛼.r_min;

𝛽.d_max = 𝛼.d_max;

𝛽.r_temp = get-dyn-rec(𝛽.r_min, 𝜓(𝛼,𝛽,int));

𝛽.temp = 0;

repeat length(ar) {

ar[𝛽.temp] = track(ar[𝛽.temp], 𝛽.d_temp, 𝛽.r_temp);

𝛽.temp = 𝛽.temp + 1;

}

𝑠𝑒𝑞
Fig. 17. Sequentialized Form of Optimized Array Communication in Diamont.

The correctness of this communication related optimization can be easily proved on the sequen-

tialized version of the program. If we consider 𝑠𝑎𝑟𝑟𝑎𝑦 to be the de-sugared optimized code, we wish

Appendix D 21

to prove the following proposition that extends the soundness proof from before to work for array

assignment. The proposition notes that as each array element is copied over, the resultant array

elements have their interval correctly updated in the runtime.

Proposition 1. If ⟨𝑠𝑎𝑟𝑟𝑎𝑦, ⟨𝜖, 𝜔, 𝜑⟩⟩ ⇓ ⟨𝑠 ′, ⟨𝜖 ′, 𝜔 ′, 𝜑 ′⟩⟩ then, ∀𝑖 ∈ [0..length(𝑎)) .
⟦ℛ∗ [𝜔 ′[𝑎𝑟, 𝑖] .𝜖 ≥ Δ(𝑎𝑟 [𝑖])]⟧(𝜖 ′, 𝜑 ′) ≥ 𝜔 ′[𝑎𝑟, 𝑖] .𝛿

Proof. (sketch)

Note that ⟦𝜔 ′[𝑎𝑟, 𝑖] .𝜖 ≥ Δ(𝑎𝑟 [𝑖])⟧ denotes the subset of approximate environments where the

error in ar[i] is less than 𝜔 ′[𝑎𝑟, 𝑖] .𝜖 . And ⟦ℛ∗ [𝜔 ′[𝑎𝑟, 𝑖] .𝜖 ≥ Δ(𝑎𝑟 [𝑖])]⟧(𝜖 ′, 𝜑 ′) denotes the
probability of being in such an environment.

Therefor for any y s.t 𝑦 ≥ 𝜔 ′[𝑎𝑟, 𝑖] .𝜖 , we can say the following,

⟦𝜔 ′[𝑎𝑟, 𝑖] .𝜖 ≥ Δ(𝑎𝑟 [𝑖])⟧ ⊆ ⟦𝑦 ≥ Δ(𝑎𝑟 [𝑖])⟧
Therefore,

⟦ℛ∗ [𝜔 ′[𝑎𝑟, 𝑖] .𝜖 ≥ Δ(𝑎𝑟 [𝑖])]⟧(𝜖 ′, 𝜑 ′) ≥ 𝜔 ′[𝑎𝑟, 𝑖] .𝛿 ⇒ ⟦ℛ∗ [𝑦 ≥ Δ(𝑎𝑟 [𝑖])]⟧(𝜖 ′, 𝜑 ′) ≥ 𝜔 ′[𝑎𝑟, 𝑖] .𝛿

Based on Theorem 2, we will assume that the runtime is sound before reaching this point of the

program. Therefore, ∀𝑖 ∈ [0..length(𝑎)] . ⟦ℛ∗ [𝜔 [(𝑎, 𝑖)] .𝜖 ≥ Δ(𝑎[𝑖])]⟧(𝜖, 𝜑) ≥ 𝜔 [(𝑎, 𝑖)] .𝛿
Based on the calculation of 𝛼.d_max, we can also show that

∀𝑖 ∈ [0..length(𝑎)] . 𝛼 .d_max ≥ 𝜔 [(𝑎, 𝑖)] .𝜖

Therefore as discussed above, ∀𝑖 ∈ [0..length(𝑎)],

⟦ℛ∗ [𝜔 ′[𝑎𝑟, 𝑖] .𝜖 ≥ Δ(𝑎𝑟 [𝑖])]⟧(𝜖 ′, 𝜑 ′) ≥ 𝜔 ′[𝑎𝑟, 𝑖] .𝛿 ⇒ ⟦ℛ∗ [𝛼.d_max ≥ Δ(𝑎𝑟 [𝑖])]⟧(𝜖 ′, 𝜑 ′) ≥ 𝜔 ′[𝑎𝑟, 𝑖] .𝛿

We can see that at the end of 𝑠𝑎𝑟𝑟𝑎𝑦 , ∀𝑖 ∈ [0..length(𝑎)] . 𝜔 ′[𝑎𝑟, 𝑖] = 𝛼.d_max due to the track
statements.

By the definition of get-dyn-rec, 𝛽.d_temp = 𝜔 [(𝑎, 𝑖)] ×𝜓 (𝛼, 𝛽, dynamic int)

We can also prove the correctness of the probability 𝜔 ′[𝑎𝑟, 𝑖] .𝛿 similarly.

Note that the proof is on the sequentialized version of the code. Due to the equivalence we

proved earlier the optimization does not have to be proved correct for parallel programs, which is

difficult. □

D.2.2 Early checking Optimization
for a subset of instructions we can perform static analysis to stop runtime monitoring earlier. We

perform this by moving-up the check to the earliest possible location using a set of rewrites. The

following code snippet shows an example of how we perform such rewrites.

𝛼.x = 𝛼.a + 𝛼.b

check(ae, d, r)

[] ⇒ check(ae[(𝛼.a+𝛼.b)/𝛼.x], d, r)

𝛼.x = 𝛼.a + 𝛼.b

[]
𝛼.x = 𝛼.a - 𝛼.b

check(ae, d, r)

[] ⇒ check(ae[(𝛼.a-𝛼.b)/𝛼.x], d, r)

𝛼.x = 𝛼.a - 𝛼.b

[]
x = 𝑒1 [r_exp] 𝑒2
check(ae, d, r)

[] ⇒ check(ae[AE(e_1)/x], d, r/r_exp)

x = 𝑒1 [r_epx] 𝑒2

[]
𝛼.x = 𝛽.b

check(ae, d, r)

[] ⇒ check(ae[𝛽.b/𝛼.x], d, r)

𝛼.x = 𝛽.b

[]

22

Such re-writes closely follow the static analysis as defined and proven sound in [3, 4] for the

sequential subset of the language.

error_expression[AE(𝑒1)/x] expresses substituting AE(𝑒1) for every occurrence of x in

error_expression.

Theorem 2 (Soundness of optimization). For all statements 𝑠 their and optimized version 𝑠𝑜𝑝𝑡 ,

⟨𝑠, ⟨𝜎,ℎ⟩, `, 𝐷⟩ 1−→𝜓 ⟨𝑠 ′,⊥, ` ′, 𝐷 ′⟩ =⇒ ⟨𝑠𝑜𝑝𝑡 , ⟨𝜎,ℎ⟩, `, 𝐷⟩
1−→𝜓 ⟨𝑠 ′′,⊥, ` ′′, 𝐷 ′′⟩

Proof. (sketch)

As we apply the optimizations only on sequentializable programs, for each rule we can show

the soundness considering the sequential program alone without needing to consider parallel

interleavings, potential of deadlocks, etc.

For the first rule, the check looks up the dynamic property map for the variable 𝑥 . Instead, we can

move the check before the assignment as we can calculate the relevant error expression without

having to evaluate the expression. These rules closely follow the static analysis as defined and

proven sound in [3, 4] for the sequential subset of the language.

Based on the definitions in Figure 5, and Figure 7, we can see that 𝑠 in the first rule goes into

an error state due to calc-eps(ae, 𝐷 ′) evaluating to false. The only difference from 𝐷 to 𝐷 ′
is the

execution of the assignment statement.

Based on the definition of the runtime we can see that, 𝐷 ′[𝛼.𝑥] .𝜖 = 𝐷 [𝛼.𝑎] .𝜖 + 𝐷 [𝛼.𝑏] .𝜖
and 𝐷 ′[𝛼.𝑥] .𝛿 = 𝐷 [𝛼.𝑎] .𝛿 + 𝐷 [𝛼.𝑏] .𝛿 − 1. Since we replace 𝑥 with 𝑎 + 𝑏 in 𝑎𝑒 we can see that

calc-eps(ae, 𝐷 ′) = calc-eps(ae[(𝛼 .a+𝛼 .b)/𝛼 .x], 𝐷).
Similarly we can see that the error confidence is calculated correctly as,

calc-del(ae, 𝐷 ′) ≤ 𝑟 =⇒
(∑

𝑣∈𝜌 (𝑎𝑒) 𝐷
′[𝑣] .𝛿

)
− (|𝜌 (𝑎𝑒) | − 1) ≤ 𝑟

since 𝜌 (𝑎𝑒 [(𝛼.𝑎 + 𝛼.𝑏)/𝛼.𝑥]) − 𝜌 (𝑎𝑒) = {𝛼.𝑎, 𝛼 .𝑏},(∑
𝑣∈𝜌 (ae[(𝛼 .a+𝛼 .b)/𝛼 .x]) 𝐷 [𝑣] .𝛿

)
− (|𝜌 (ae[(𝛼 .a+𝛼 .b)/𝛼 .x]) | − 1)

=

(∑
𝑣∈𝜌 (ae) 𝐷 [𝑣] .𝛿

)
− (|𝜌 (ae[(𝛼 .a+𝛼 .b)/𝛼 .x]) | − 1)

To extend the optimization for multiplication and division we cannot easily perform such

optimizations because the maximum error depends on the actual value variables can take. We can

use an interval analysis and use the static bounds on variables as an potential alternative.

The last rule shows how communication in the parallel program represented as assignment in

the sequentialized program gets optimized. We perform such optimizations until all the variables

referred to in the check function belong to a single process. Optimizations that result in a check

referring to variables of more than one process are abandoned. □

D.2.3 Combining static and runtime verification
Consider the following parallel program S.

dyn-send(𝛽, dynamic t, 𝛼.input);

𝛼.output = dyn-receive(𝛽, dynamic t);

check(𝛼.output, 𝑑check, 𝑟check)

[]
𝛼

∥
𝛽.data = dyn-receive(𝛼, dynamic t);

// spec of func :

// ⟨d ≥ Δ(ret),r*ℛ∗ [(𝑑1 ≥ Δ(data))] ⟩
𝛽.output = func(𝛽.data);

dyn-send(𝛼, dynamic t, 𝛽.output);

𝛽

Following is the Canonical sequentialization of that program Sseq.

Appendix D 23

𝛽.data = 𝛼.input;

𝛽.output = func(𝛽.data);

𝛼.output = 𝛽.output:

check(𝛼.output, 𝑑check, 𝑟check)

 seq

Let us consider applying the following transformation on the sequentialized program to get the

following program S
opt

seq
.

check(𝛼.input, d1, 0);

𝛼.temp = endorse(𝛼.input)

𝛽.data = 𝛼.temp;

𝛽.output = func(𝛽.data);

𝛼.temp2 = 𝛽.output

𝛼.output = track(𝛼.temp2, d,

r*rdDyn(𝛼.input).𝛿):

check(𝛼.output, 𝑑check, 𝑟check)

 seq
Resultant parallel program S

opt
:

check(𝛼.input, d1, 0);

𝛼.temp = endorse(𝛼.input)

send(𝛽, approx t, 𝛼.temp);

𝛼.temp2 = receive(𝛽, approx t);

𝛼.output = track(𝛼.temp2, d,

r*rdDyn(𝛼.input).𝛿)

check(𝛼.output, 𝑑check, 𝑟check)

𝛼

∥
𝛽.data = receive(𝛼, approx t);

//⟨d ≥ Δ(ret),r*ℛ∗ [(𝑑1 ≥ Δ(data))] ⟩
𝛽.output = func(𝛽.data);

send(𝛼, approx t, 𝛽.output);

𝛽

We will argue that S and S
opt

are equivalent because Sseq and S
opt

seq
are equivalent:

Theorem 3 (Soundness).

⟨𝑆, ⟨𝜎,ℎ⟩, `, 𝐷⟩ ∗−→𝜓 ⟨𝑠 ′,⊥, ` ′, 𝐷 ′⟩ =⇒ ⟨𝑆opt, ⟨𝜎,ℎ⟩, `, 𝐷⟩ ∗−→𝜓 ⟨𝑠 ′′,⊥, ` ′′, 𝐷 ′′⟩
Proof. As ∅,∅, 𝑆 {∗ ∅, 𝑆seq, skip, From Theorem 2 on the equivalence of sequentialized

programs we claim that, ⟨𝑆, ⟨𝜎,ℎ⟩, `, 𝐷⟩ ∗−→𝜓 ⟨𝑠 ′,⊥, ` ′, 𝐷 ′⟩ =⇒ ⟨𝑆seq, ⟨𝜎,ℎ⟩, `, 𝐷⟩
∗−→𝜓

⟨𝑠 ′,⊥, ` ′, 𝐷 ′⟩,

Based on the definition of Diamont’s runtime, there are two statements in 𝑆seq that can fail and

lead to an error state.

Case 1: The function specifications requirements are not satisfied. Based on the definition of

S-FUNCTION-FAIL rule, the failure results from an execution where,

⟨𝑆seq, ⟨𝜎,ℎ⟩, `, 𝐷⟩
∗−→𝜓 ⟨𝛽.output = func(𝛽.data); 𝑠 ′, ⟨𝜎 ′, ℎ′⟩, ` ′, 𝐷 ′⟩ ∗−→𝜓 ⟨skip,⊥, ` ′, 𝐷 ′⟩

Based on the definition of the rule, this implies that D
′
[𝛽 .data].𝜖 ≥ d1

we can also see that, D
′
[𝛽 .data] = D[𝛼 .input]. Therefore, in a this program, D[𝛼 .input].𝜖 ≥ d1.

Now, lets consider S
opt

seq
. Again, based the definition of the runtime, if D[𝛼 .input].𝜖 ≥ d1, the check

at the start of the program will fail. This would result in a error state (S-check-fail rule in the

semantics along with the definition of dyn-check(𝛼.input, d1 ,0 ,D)).

Case 2: The check function (check(𝛼.output, 𝑑check, 𝑟check)) at the end of Sseq fails.

Based on the definition of S-check-fail, (D[𝛼 .output].𝜖 > 𝑑check ∨𝐷 [𝛼.output] .𝛿 < 𝑟check)

In addition, we can see that, D
′
[𝛼 .output] = D

′
[𝛽 .output]

Therefore,

(𝐷 [𝛽.output] .𝜖 > 𝑑check) ∨ (𝐷 [𝛽.output] .𝛿 < 𝑟check) (1)

24

As the function func has been verified to guarantee the specification for all inputs, we can use the

static analysis to identify maximum error that 𝛽 .output can take. The rule that apply to functions

calls perform the following updates defined in S-FUNCTION in Figure 4:

D
′
[𝛽 .output]= ⟨𝑑, 𝑟 × calc-del(𝑓 (𝛽.data), 𝐷)⟩ = ⟨𝑑, 𝑟 × 𝐷 ′[𝛽.data] .𝛿⟩

and 𝐷 ′[𝛽.data] = 𝐷 ′[𝛼.input]

Therefore, D
′
[𝛽 .output] = ⟨𝑑, 𝑟 × 𝐷 ′[𝛽.data] .𝛿⟩ = ⟨𝑑, 𝑟 × 𝐷 ′[𝛼.input] .𝛿⟩

So, based on 1,

(𝑑 > 𝑑check) ∨ (𝑟 × 𝐷 ′[𝛼.input] .𝛿 < 𝑟check) (2)

Let us again consider the execution of S
opt

seq
, based the definition of the runtime, in Figure 5, we can

see that, due to the track statement,

D[𝛼 .output] = ⟨𝑑check, 𝑟 × 𝐷 [𝛼.input] .𝛿⟩
As, (d > 𝑑check ∨𝑟 × 𝐷 [𝛼.output] .𝛿 < 𝑟check), this check will fail, resulting in an error state.

We can see that ∅,∅, 𝑆opt {∗ ∅, 𝑆opt
seq

, skip. Therefore from Theorem 2,

⟨𝑆opt
seq

, ⟨𝜎,ℎ⟩, `, 𝐷⟩ ∗−→𝜓 ⟨𝑠 ′,⊥, ` ′, 𝐷 ′⟩ =⇒ ⟨𝑆opt, ⟨𝜎,ℎ⟩, `, 𝐷⟩ ∗−→𝜓 ⟨𝑠 ′,⊥, ` ′, 𝐷 ′⟩,

□

Appendix E

E.1 INPUT SIZES
Table 1 gives the size of the primary inputs we used to evaluate each benchmark and the number

of worker threads. Apart from the worker threads, each benchmark also contained one master

thread. We used additional input sizes solely to evaluate the effect of optimization on runtime and

communication volume.

Table 1. Input Size and Number of Threads Used for Evaluation of Benchmarks

Benchmark Workers Input Size
PageRank 8 8 iterations on roadNet-PA graph from SNAP

SSSP 10 62K nodes (p2p-Gnutella31 graph from SNAP)

BFS 10 62K nodes (p2p-Gnutella31 graph from SNAP)

Kmeans-Agri 8 248-2048 points of 2D data

SOR 10 10 iterations on 100 × 100 upto randomly generated array

Sobel 10 100 × 100 upto randomly generated array

Matrix Mult. 10 two 100 × 100 randomly generated matrices

Regression 10 1000 randomly generated floats

For the sensitivity analysis we increased the input sizes to 400 × 400 for Sor, 180 × 180 Sobel, the

two matrices were increased in size to 200 × 200 for Matrix Multiplication, For graph algorithms

we used 4 graphs from SNAP (p2p-Gnutella[09, 25, 30, and 31])

Fig. 18. Effect of input size on communication volume. Dashed red line is the baseline, orange line is Diamont.

25

Appendix F

for IoTDevice in Q {

IoTDevice.tempVal, IoTDevice.tempErr, IoTDevice.tempConf := readTemperature()

IoTDevice.humidVal, IoTDevice.humidErr, IoTDevice.humidConf := readHumidity()

IoTDevice.temperature = track(IoTDevice.tempVal, IoTDevice.tempErr, IoTDevice.tempConf)

IoTDevice.humidity = track(IoTDevice.humidVal, IoTDevice.humidErr, IoTDevice.humidConf)

Manager.data[i] = point{IoTDevice.temperature, IoTDevice.humidity}

}

Manager.centers = // randomly pick some nodes

for Worker in R {

Worker.data = Manager.data

}

for Manager.j:=0; Manager.j<ITERATIONS; Manager.j++ {

for Worker in R {

Worker.centers = Manager.centers

}

for Worker in R {

Worker.newcenters = kmeansKernel(Worker.data, Worker.centers, Worker.assign)

Manager.newcenters[Worker] = Worker.newcenters [reliability] garbage()

}

Manager.centers = AverageOverThreads(Manager.newcenters)

}

Fig. 19. Simplified sequentialized program for the Smart Agriculture example

REFERENCES
[1] Alexander Bakst, Klaus v. Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala. Verifying distributed programs via canonical

sequentialization. In OOPSLA, 2017.
[2] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative reliability for programs that execute on

unreliable hardware. In OOPSLA, 2013.
[3] Vimuth Fernando, Keyur Joshi, and Sasa Misailovic. Verifying safety and accuracy of approximate parallel programs via

canonical sequentialization. In OOPSLA, 2019.
[4] Saša Misailovic. Accuracy-Aware Optimization of Approximate Programs. PhD thesis, Massachusetts Institute of

Technology, 2015.

[5] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. Chisel: Reliability- and accuracy-aware

optimization of approximate computational kernels. In OOPSLA, 2014.

26

	A.1 Syntax
	A.2 Semantics of the Diamont Intermediate Representation
	A.2.1 Basic Definitions and Semantics
	A.2.2 Review of Semantics of Basic Statements
	A.2.3 Global Semantics
	A.2.4 Semantics of Dynamic monitoring
	B.1 Type System
	C.1 Rewrite rules
	C.2 Rewrite Rule Soundness
	D.1 Soundness of the Runtime
	D.1.1 Big Step Notation.

	D.2 Soundness.
	D.2.1 Array Optimization
	D.2.2 Early checking Optimization
	D.2.3 Combining static and runtime verification
	E.1 Input Sizes
	References

