
Aloe: Verifying Reliability of Approximate Programs
in the Presence of Recovery Mechanisms
Keyur Joshi

University of Illinois at

Urbana-Champaign, USA

kpjoshi2@illinois.edu

Vimuth Fernando

University of Illinois at

Urbana-Champaign, USA

wvf2@illinois.edu

Sasa Misailovic

University of Illinois at

Urbana-Champaign, USA

misailo@illinois.edu

Abstract
Modern hardware is becoming increasingly susceptible to

silent data corruptions. As general methods for detection

and recovery from errors are time and energy consuming,

selective detection and recovery are promising alternatives

for applications that have the freedom to produce results

with a variable level of accuracy. Several programming lan-

guages have provided specialized constructs for expressing

detection and recovery operations, but the existing static

analyses of safety and quantitative analyses of programs do

not have the proper support for such language constructs.

This work presents Aloe, a quantitative static analysis of

reliability of programs with recovery blocks – a construct

that checks for errors, and if necessary, applies the corre-

sponding recovery strategy. The analysis supports reasoning

about both reliable and potentially unreliable detection and

recovery mechanisms. It implements a novel precondition

generator for recovery blocks, built on top of Rely, a state-

of-the-art quantitative reliability analysis for imperative pro-

grams. Aloe can reason about programs with scalar and array

expressions, if-then-else conditionals, and bounded loops

without early exits. The analyzed computation is idempotent

and the recovery code re-executes the original computation.

We implemented Aloe and applied it to a set of eight pro-

grams previously used in approximate computing research.

Our results present significantly higher reliability and scale

better compared to the existing Rely analysis. Moreover, the

end-to-end accuracy of the verified computations exhibits

only small accuracy losses.

CCS Concepts • Theory of computation → Program
specifications; Program verification.
Keywords Reliability, Approximate Computing
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1 Introduction
With the end of Dennard scaling and the slowdown ofMoore’s

law, hardware is becoming increasingly susceptible to oper-

ational errors, due to imperfect manufacturing, aging, and

variations of environmental factors such as temperature,

voltage, or radiation [4, 7, 15, 36, 43]. While many hardware

errors are still routinely caught and corrected at the hardware

level, some errors can propagate across the system stack and

silently corrupt program data. Such silent data corruptions

(SDCs) can lead to unacceptable program results. Classical

solutions for detecting and correcting SDCs come at a high

cost, e.g., indiscriminate instruction replication or n-module

redundancy can double or triple a program’s energy usage.

More recently, researchers observed that many modern

applications have the freedom to produce results with vari-

able level of accuracy. Example workloads include image

and video processing, machine learning, big-data analyt-

ics, probabilistic inference, and sensing. These applications

can tolerate selective SDC detection – identifying that some

subcomputation experienced an error and produced an un-

acceptable result – and low-cost recovery – recomputing the

correct or approximate result, or sometimes continuing the

execution without correction at all. Guided by these observa-

tions, various automated and developer-assisted techniques

enable developing acceptably reliable executions with re-

duced time/energy cost [11, 13, 16, 18, 22, 26–28, 31, 39–41].

Several reliability-aware languages, e.g. Relax [13] and

Topaz [1], expose recovery blocks to the developer. These

blocks have the following conceptual form:

try { code; }
check { checker(programState); }
recover { code; }

Potentially unreliable code executes inside the try block. The
checker function analyzes the program state and attempts to

detect potential errors in the computation. It can use various

https://doi.org/10.1145/3368826.3377924
https://doi.org/10.1145/3368826.3377924
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exact procedures (e.g., checking that a SAT formula is cor-

rect is much less time consuming than finding the solution)

or approximate procedures (e.g., anomaly detection [1]). If

the check fails, the execution runs the recovery code, inside

the recover block. Recovery blocks are appealing as they

empower the developers with fine-grained control over cus-

tomized recovery strategies and can provide hints to program

analyses and compilers on how to generate code. However,

existing languages cannot rigorously analyze the reliability

of recovery blocks.

Statically analyzing quantitative reliability and safety of

computations has been a topic of increased interest in the

programming languages community. Safety analyses that

ensure that programs do not violate important logical in-

variants include EnerJ’s type analysis [42], RHL relational

safety [8, 23], and verification with first-class execution fault

models in Leto [5]. Quantitative reliability denotes the prob-

ability with which a computation with unreliable operations

produces the correct results. Rely [10], Chisel [33], Decaf [6],

and Parallely [20] all compute the probability with which

an unreliable execution produces the same (or acceptably

similar) result as a fully reliable execution. For instance, a

reliability of 0.99 states that the program will generate the

same result as the reliable execution on 99% of runs.

Despite the ability to successfully determine reliability

bounds on unreliable executions, existing reliability analyzes

are significantly imprecise when analyzing computations

with SDC detection and recovery mechanisms. At best, they

treat these constructs as arbitrary conditional code, leading

to a uniform reduction in the reliability of the computation.

This is imprecise, because recovery blocks will typically not

reduce the reliability of the computation, even if the code

within the try block is unreliable. Supporting detection and

recovery mechanisms within the quantitative static analyses

will greatly improve precision, and consequently the ability

of these analyses to analyze larger computations and ensure

that the computations have the desired reliability properties.

OurWork.We present Aloe, the first static analysis of quan-

tifiable reliability of programs that include constructs for

selective SDC detection and recovery. Our language exten-

sions expose recovery blocks and multiple detection and

recovery choices to the developer. Aloe can compute the

impact of both the checker function and the recover block.
We support both perfect and imperfect checkers. A perfect

checker will always detect whether or not an error occurred

while executing the try block. An imperfect checker may

occasionally fail to detect errors (false negative) or may de-

tect an error even when no error occurred (false positive).

We analyze computations with idempotent code inside the

try block (i.e. the code can be re-executed without having

previous executions affect the results of the new execution)

and recover blocks that re-execute the computation either

reliably or unreliably.

Aloe’s analysis builds on top of Rely’s precondition gener-

ator, which computes a quantitative reliability predicate for

each statement in the program. Our analysis specifies the

rules for precisely analyzing recovery blocks with multiple

recovery strategies. We also provide new rules for simplifica-

tion of reliability predicates that improve the applicability of

our analysis. The analysis time is proportional to the number

of statements in the program after unrolling bounded loops

(as in Rely). Our approach directly extends to other similar

analyses [6, 20, 33]. We believe that this approach provides

a valuable guidance for future compiler infrastructures that

automate selective reliability analysis and placement.

Results. We implement our analysis and apply it to eight

programs from various benchmarks that were previously

used in approximate computing research. We use the specifi-

cations of the unreliable hardware from EnerJ [42] and the

specifications of the approximate checkers from Topaz [1].

Our experiments show that the analysis of the recovery

blocks is significantly more precise than the existing analysis

in Rely – Aloe verifies all kernels identified in each bench-

mark for the reliability bound 0.9999. Aloe also verifies the

end-to-end reliability of the program’s output for the bound

0.99. These results are orders of magnitude more precise

than the baseline Rely analysis, which is not able to verify

any of the kernels or end-to-end bounds. We also show that

kernels with recovery blocks produce results with acceptable

reliability even when the checkers are imperfect.

Contributions.Our paper makes several key contributions:

• Concept: We present the concept of quantifiable reliabil-

ity for computations with recovery blocks.

• Analysis with Perfect Checkers: We present a Rely-

style analysis for programs with recovery blocks and per-

fect checkers.

• Analysis with Imperfect Checkers: We present how

to extend our analysis to operate with imperfect checkers

that may report non-existent errors, or fail to identify

existing errors.

• Evaluation: We show the effectiveness of our analysis

and generate precise reliability bounds for a set of eight

real-world approximate computations.

2 Example
We will use PageRank as our running example. PageRank is

a link analysis algorithm that ranks web pages according to

their importance. Figure 1 presents the implementation of

the PageRank kernel for a single node in a graph.

The PageRank of an node is a weighted sum of the PageR-

anks of each incoming edge. The PageRank is updated in this

manner over multiple iterations. This computation is known

to be tolerant to errors, partly due to its iterative nature.

We study the execution of this kernel on an unreliable

hardware, in which the arithmetic operations can fail with
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newPagerank = 0.15;

inlink = Inlinks[i];

j = 0;

repeat MaxEdges {

if j < inlink {

neighbor = Edges[j];

outN = Outlinks[neighbor];

current = Pageranks[neighbor];

temp = 0.85 * current;

temp = temp / outN;

newPagerank = newPagerank + temp;

j = j + 1;

};

};




Figure 1. PageRank Kernel.

some probability. For example, EnerJ [42] presents several

approximation strategies that provide arithmetic instructions

that produce erroneous results with probability 10
−6
, 10

−4
,

or 10
−2

but save energy. We model such instructions using

the probabilistic-choice statements as x = ecorrect [p] rand();
the arithmetic operation succeeds with probability p, but
results in a random error value with probability 1 − p.

2.1 Try-Check-Recover Blocks
A common approach to increase the reliability of compu-

tations is to run them using unreliable hardware, check if

an error occurred during the execution of the computation,

and redo the computation using precise hardware. Figure 2

presents this approach for the PageRank kernel. The program

first runs the statements in the try block. The arithmetic op-

erations in the try block are unreliable and only produce the

correct value with probability 0.999. The execution continues

until the end of the try block.

Checking. Then, the program evaluates the checker func-

tion (checker) on the program state to detect if there was

an error in the computation. If the checker detects an error,

it runs the recover block, which has fully reliable arithmetic

operations. If the checker can identify all errors, the overall

computation becomes fully reliable. Moreover, if the execu-

tion of the checker is inexpensive, and the errors are infre-

quent, the overall computation may be faster and/or more

energy efficient than the original program, since the recover

block will be rarely executed.

The checker needs to ensure full correctness, i.e. all output

variables have correct values. Error detection mechanisms

can either be implemented in hardware [32, 35] or in soft-

ware. Software techniques include re-executing the compu-

tation and comparing the results (useful when the try block

is much faster than the recover block), or verifying the re-

sult with a verification algorithm (e.g. results of NP-complete

problems are verifiable in P time). In addition, machine learn-

ing can be used to identify outliers in execution [1]. For our

example, the code sets an internal flag when an error occurs

in the try block, and the checker detects whether this flag

was set (similar to Relax [13]).

newPagerank = 0.15;

inlink = Inlinks[i];

j = 0;

repeat MaxEdges {

if j < inlink {

neighbor = Edges[j];

outN = Outlinks[neighbor];

current = Pageranks[neighbor];

try {

temp = 0.85 * current [0.999] rand();

temp = temp / outN [0.999] rand();

sum = newPagerank + temp [0.999] rand();

} check { checker(sum, current, outN, newPagerank) }

recover {

temp = 0.85 * current [1] rand();

temp = temp / outN [1] rand();

sum = newPagerank + temp [1] rand();

};

newPagerank = sum;

j = j + 1;

};

};




Figure 2. PageRank Kernel Run on Unreliable Hardware.

Recovery. If the checker function detects an error during

the execution, the recover block is executed to redo the com-

putation in precise hardware that is guaranteed to produce

a correct result (i.e. probability is 1.0).

2.2 Verification of Reliability
We define reliability as the probability that the results of the

computation are correct (equal to the results of an execution

with no errors). We want to verify that the reliability of the

calculated variable newPagerank is fully reliable – equal to

1.0. It depends on the probability that the arithmetic oper-

ations produce correct values in the try block. However, if

the checker can identify the errors, the computation will

proceed to the recover block, which recomputes the values

correctly, and therefore the final result will always be exact.

AnalysisRequirements.Aloe’s reliability analysis requires
that the computation of the try block be idempotent (i.e. the

try block can be re-executed without having previous ex-

ecutions affect the new execution) [14]. This allows us to

re-execute the computation without expensive checkpoints.

In addition, the computation of the try and recover blocks

should execute equivalent computations that read from the

same input variables and write to the same output variables.

If the try and recover block perform completely different

computations, then the results of the two blocks would not

be comparable from a reliability viewpoint.

Encoding detection and recovery in Rely. The existing
quantitative reliability analysis from Rely cannot be used

to accurately calculate the reliability of a try-check-recover

block. To represent this computation in Rely, one can convert

the try-check-recover statement to a conditional statement,

where Stry represents the instructions in the try block of our

try-check-recover statement, and Srec represents the instruc-

tions in the recover block:
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Stry;

if ( checker(sum, current, outN, newPagerank) ) {

skip;

} else {

Srec;

}




The semantics of this computation closelymirror those of our

try-check-recover block. However, Rely’s analysis cannot

infer that Srec only executes when Stry fails and that it elim-

inates the error produced by Stry. It instead conservatively

assumes that errors in Stry can remain uncorrected.

2.3 Results
For maxEdges = 8, Aloe’s analysis can automatically show

that the reliability of newPagerank is 1.0 due to the recovery
mechanism detecting and fixing all errors. The analysis runs

in 3ms. In contrast, Rely’s analysis is too conservative – it

calculates a reliability of ∼0.976. Aloe can analyze several

other interesting scenarios which we describe next.

Recovery blocks can be unreliable. Suppose arithmetic

instructions in the recover block can fail with probability

10
−4
. Aloe computes that the reliability of the try and recover

blocks is ∼ 0.997 and ∼ 0.9997 respectively. Since both try

and recover must fail for try-check-recover block to fail, the

overall reliability of the try-check-recover block ∼0.9999991.
When maxEdges = 8, the reliability of the entire kernel

is ∼0.999993. In this way, it is possible to combine unreliable

components to produce more reliable components. In con-

trast, Rely’s analysis calculates the reliability of the kernel

as ∼0.976.

Checkers can be unreliable. We also analyzed the im-

pact of an imperfect checker function on the reliability of

newPagerank. For a checker function that detects 95% of er-

roneous runs, and may detect spurious errors 5% of the time,

Aloe calculated the newPagerank reliability of ∼0.9999.

Recovery can be repeated multiple times.We can apply

the re-execution strategy multiple times, to further increase

the overall reliability. For convenience, we added the key-

word redo[n], which nests the try-check-recover statement

inside the recover block n times.

3 Background
We review Rely’s [10] quantitative reliability analysis.

Reliability Predicates.We generate reliability predicates

to constrain the reliability of an approximate program. A

reliability predicate Q has the following form:

Rf := r | R(O) | r · R(O)
Q := r ≤ Rf | Q ∧Q

A reliability factor (Rf ) is either a number r , a joint reliability
predicate representing the probability that a set of variables

O has the same values in an approximate execution as an

exact, error-free execution, or a product of a number r and a

joint reliability predicate. A reliability predicate (Q) is either

a comparison between a number and a reliability factor or a

conjunction of predicates.

For example, we can specify the constraint that the relia-

bility of some variable x in a program is at least 0.99 (99%)

using the reliability predicate 0.99 ≤ R({x}). In this predi-

cate, R({x}) is the probability that an approximate execution

of the program generates the same value for x as an exact,

error-free execution.

Reliability Precondition Generation. The reliability pre-

condition generator C ∈ S ×Q 7→ Q is a function that takes

as inputs a statement and a postcondition that must be sat-

isfied after executing the statement and produces the cor-

responding precondition as the output. We use the existing

precondition generation rules as in Rely and extend them

to our new recovery constructs as described in Sections 5

and 6. Some rules of interest are:

C(x = e, Q ) = Q [ R( ρ(e) ∪ X ) / R( {x} ∪ X ) ]

C(x = e1 [r ] e2, Q ) = Q [ r · R( ρ(e1) ∪ X ) / R( {x} ∪ X ) ]

C( if x {S1} else {S2}, Q ) = C( S1, Q ) ∧C( S2, Q )

For a simple assignment of an expression, any reliability

specification containing x is updated such that x is replaced

by the variables occurring in e (ρ(e)) as the reliability of x
is only dependent on the reliability of variables used in the

expression. For probabilistic assignment, the reliability of x
is equal to r (the probability of the assignment evaluating

without errors) times the reliability of variables occurring in

e1. Conditionals are analyzed as a nondeterministic choice

between the if and else branches. The precondition for a

conditional statement is the conjunction of the precondi-

tions generated from the two branches. The reliability of the

branch variable is incorporated into the analysis via condi-

tional flattening ([10] Section 5.1). Bounder loops in Rely are

unrolled into a sequence of nested conditionals.

Substitution. The substitution for reliability predicates in

Rely, e0 [ e2 / e1 ], replaces all occurrences of the expression
e1 with the expression e2 within the expression e0. The sub-
stitution matches set patterns, e.g., the pattern R({x} ∪X ) is

a joint reliability factor that contains the variable x , along-
side with the remaining variables in the set X . The result of

r · R({x , z}) [ R({y} ∪ X ) / R({x} ∪ X ) ] is r · R({y, z}).

4 Language
Figure 3 presents the syntax of the language used in Aloe.

The Aloe language supports scalar and array expressions,

if-then-else conditionals, and bounded loops without early

exits. To analyze the reliability of a program, we require

three main components:

• Program: a program written in the Aloe language. The

language adds support for recovery mechanisms to Rely.

• Approximation Models: specifies the probabilities that
instructions produce incorrect results. We can define mul-

tiple models (e.g., separate for try and recover blocks).
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n ∈ N quantities
m ∈ N ∪ F values
r ∈ [0, 1.0] probability
x ,b ∈ Var variables
a ∈ ArrVar array variables
f ∈ Func external functions
op ∈ {+,−, . . .} arithmetic operators

Exp → m | x | f (Exp∗) | expressions
(Exp) | Exp op Exp

t → int<n> | float<n> basic types
D → t x | t a[n+] | variable

D;D declarations

P → D;S program

recovery→

redo[n] redo up to n times
| redo[ψ ] redo on different reliability model
| S other (custom) recovery

S →

skip empty program
| x = Exp assignment
| x = Exp [r ] Exp probabilistic choice
| S;S sequence
| x = a[Exp+] array load
| a[Exp+] = Exp array store
| if Exp {S} else {S} branching
| repeat n {S} repeat n times
| x = (T)Exp cast
| try {S} check {Exp} recover {recovery} try-check-recover

Figure 3. Syntax

• Specification of checker functions: specifies the behav-
ior of checker functions used to check for errors in execu-

tion. For each checker function it defines the false-positive

rate (pFP ), and the false-negative rate (pFN ).

The syntax represents a subset of Rely [10]. We use the prob-

abilistic choice statement from Parallely [20] to explicitly

represent unreliable operations and their failure probability

(in lieu of the ‘+.’ notation and implicit hardware model).

4.1 Semantics

Approximation Model. An approximation model speci-

fies the runtime behavior of the environment. It is a tuple

ψ ∈ (x → R) that maps probabilistic choice expressions to

the probability of an erroneous execution. Aloe uses this

specification to get the reliability of statements for precondi-

tion generation.

Statements.The small-step relation ⟨s,σ ,h⟩
λ,p

−→ψ ⟨s ′,σ ′,h′⟩

defines the program evaluating in a stack frame σ , and heap

h with the transition label λ. The semantics of Aloe follow

from Rely. The new addition to our language is the try-check-

recover block. Figure 4 defines the semantics for the try-

check-recover block and the probabilistic choice statements.

More detailed definitions and the remaining semantics are

given in Appendix A [24].

Probabilistic Choice. The probabilistic choice statement

x = eorig [r ] eapprox will evaluate the expression from the orig-

inal program (eorig) with probability r , or otherwise produce
the approximate result by evaluating the expression (eapprox).
It can be used to model many approximate computations.

For example, we can model an unreliable arithmetic instruc-

tions as z = (x op y) [r] randVal(), which models an

instruction that can produce an error with probability 1 − r .
The probability can be provided as a variable whose concrete

value is defined in the approximation model.

try-check-recover. try {S1} check {e} recover {S2} will eval-
uate the statement S1. It will then evaluate the expression

e to check if an error occurred in the evaluation of S1. If
such an error is detected, then S2 will be evaluated (as the

computation in S1 is idempotent, the recovery code in S2 can
continue from the current state). This behavior is similar to

that of try-catch statements commonly used in exception

handling, except that S1 is fully evaluated before the check

is executed.

Function Calls. Aloe also supports function calls as expres-
sions similar to Rely. Reliability specifications for functions

can be provided in the function signature relating the reliabil-

ity of the inputs to the output. For example the specification

int<0.99*R(x, y)> f(int x, int y) states that the reliability of the

return values of f is 0.99 ∗ R(x ,y). Function semantics are

the same as those of Rely.

Reliability The semantics of reliability predicates is the

same as in Rely. We present precise definitions of reliability

in Appendix B [24].

4.2 Preprocessing
To simplify the presentation of the analysis, we perform

multiple preprocessing steps before the reliability analysis.

Desugaring Recovery Mechanisms. The language pro-

vides several syntactic constructs to help write programs:

• redo[n]. If the recoverymechanism of a try-check-recover

block is redo[1], we replace the redo in the recover block

with the code in the try block. If the recoverymechanism is

redo[n] for n > 1, we use nested try-check-recover blocks

to generate code similar to the following:

try{ s1 }

check{e}

recover{ redo[n] }

[ ]
7→

try{ s1 }

check{e}

recover{

try{ s1 }

check{e}

recover{ redo[n-1] }

}
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S-Assign-Prob-True

⟨x = e1 [r ] e2, σ , h ⟩
C,r
−→ψ ⟨x = e1, σ , h ⟩

S-Assign-Prob-False

⟨x = e1 [r ] e2, σ , h ⟩
F ,1−r
−→ψ ⟨x = e2, σ , h ⟩

S-Try

⟨S1, σ , h ⟩
λ,r

−→ψ ⟨S1′, σ ′, h′⟩

⟨try {S1} check {e} recover {S2}, σ , h ⟩
λ,r

−→ψ ⟨try {S1’} check {e} recover {S2}, σ ′, h′⟩

S-Check-1

⟨e, σ , h ⟩ r
⇁ψ ⟨e′, σ , h ⟩

⟨try {skip} check {e} recover {S2}, σ , h ⟩
C,r
−→ψ ⟨try {skip} check {e’} recover {S2}, σ , h ⟩

S-Check-True

⟨try {skip} check {true} recover {S2}, σ , h ⟩
C,1
−→ψ ⟨skip, σ , h ⟩

S-Check-False

⟨try {skip} check {false} recover {S2}, σ , h ⟩
C,1
−→ψ ⟨S2, σ , h ⟩

Figure 4. Process-Level Dynamic Semantics of Statements (Selection)

S-Assign-Prob-Exact

⟨x = e1 [r ] e2, σ , h ⟩
C,1

−→1ψ ⟨x = e1, σ , h ⟩

S-TRY-Exact

⟨try {skip} check {e} recover {S2}, σ , h ⟩
C,1

−→1ψ ⟨skip, σ , h ⟩

Figure 5. Exact Execution Semantics of Statements (Selection)

• redo[ψ2]. Another common recovery mechanism is to

execute the program on a different hardware with higher

reliability. Then we use the new failure probabilities pro-

vided by the developer through the alternate approxima-

tion modelψ2. We duplicate the code and replace the prob-

abilities in the probabilistic choice statements usingψ2.

• Bounded Loops.As in Rely, Aloe supports bounded loops,
that it unrolls before the analysis. As the iteration number

is statically known, the unrolled program is finite.

5 Reliability Analysis: Perfect Checker
Our reliability calculation extends that of Rely by adding ad-

ditional rules for generating reliability preconditions for our

try-check-recover mechanism. These rules are only applica-

ble to postconditions whose joint reliability factor contains

at least one variable updated within the try-check-recover

block. All other postconditions are unaffected by the try-

check-recover block, and become part of the generated pre-

condition unmodified, as in [10].

Consider the following try-check-recover block:

t r y { s1 ; } check { e } r e c ov e r { s2 ; }

For a try-check-recover block to satisfy a predicateQ after

execution, it should be satisfied by all possible execution

paths through the try-check-recover block.

5.1 Precondition Generation
Assume a perfect check. Figure 6 shows the tree of possible

executions of the try-check-recover block. If the checker

detects an error, then s2 is executed and the results of s1’s
execution are discarded. There are two possible execution

paths through the try-check-recover block.

1. s1 executes correctly and the checker passes: In this

case the check ensures that instructions in s1 do not de-

grade the reliability of any variables calculated in the try

s1

s2

× r (1 − ps1)(1 − r2)R(X2)
error (1 − r

2 )

✓r (1 − ps1)r2R(X2)
no

err
or

(r2)
error (1 − ps1 )

✓ rps1R(X1)

no
er
ro
r (ps1

)

Figure 6. Probabilities for Perfect Checkers

block. The reliability of these variables only depends on

the reliability of values flowing into them in s1.
2. At least one instruction in s1 executes incorrectly,

the checker fails indicating an error, and s2 executes:
As we ensure that the computation in s1 is idempotent,

the error in s1 does not affect the reliability of variables

calculated in s2. Instead, it depends on the probability

that statements in s2 update variables reliably and the

reliability of values flowing into them in s2.

To handle these two scenarios we use and combine the pre-

conditions generated independently for s1 and s2. Suppose
the try-check-recover block must satisfy the postcondition

c ≤ r · R(X ). Similar to the precondition generation steps in

Rely, we need to replace R(X ) in the postcondition with the

total probability of reaching a state where the variables in X
have the correct value after the try-check-recover block.

Case 1. Suppose that running Rely precondition generation

on s1 results in the predicate c ≤ r · rs1 · R(Xs1). Here, rs1 is
theminimum probability that all instructions in s1 that affect
variables in X execute correctly, and R(Xs1) is the reliability

of variables that flow into X in s1. However, the check only

passes if all instructions in the try block execute correctly (as
they may impact the checker) – not just the ones affecting

variables in X . Instead of rs1, the probability that X is calcu-

lated correctly via case 1 depends on the probability that all
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instructions in s1 execute correctly, which we denote as ps1
(We discuss how to calculate ps1 in Section 5.2). Therefore,

the total contribution of case 1 towards the probability that

variables in X are calculated correctly is ps1 · R(Xs1).

Case 2. s1 executes incorrectly and fails the check with

probability 1 − ps1. Suppose that running the Rely precon-

dition generation algorithm on s2 results in the predicate

c ≤ r · rs2 · R(Xs2). Here, rs2 is the minimum probability that

all instructions in s2 that affect variables in X execute cor-

rectly, and R(Xs2) is the reliability of variables that flow into

X in s2. However, case 2 only occurs if s1 fails. Therefore, the
total contribution of case 2 towards the probability that vari-

ables in X are calculated correctly is (1 − ps1) · rs2 · R(Xs2).

Calculating R(X ). We can now calculate the total proba-

bility that variables in X are calculated correctly as the sum

of the probabilities of the two cases:

R(X ) = ps1 · R(Xs1) + (1 − ps1) · rs2 · R(Xs2),

We extended the reliability predicates with the addition op-

erator, following the usual meaning of ‘+’ since reliability

factors denote probabilities over program states [10]. We can

simplify this expression using the following ordering propo-

sition from [10], which states that for two sets of variables

A and B, if B ⊆ A then R(A) ≤ R(B). Therefore,

R(X ) ≥ ps1 · R(Xs1 ∪ Xs2) + (1 − ps1) · rs2 · R(Xs1 ∪ Xs2)

R(X ) ≥ (ps1 + (1 − ps1) rs2) · R(Xs1 ∪ Xs2).

Aloe evaluates the numerical expression in the brack-

ets during analysis to simplify the constraint to the form

c ≥ r ′ · R(X ′), since Rely’s decision procedure can only

solve constraints in this form. Following the subsumption

rules in Proposition 2 of [10], we can replace R(X ) with this

probability in the postcondition to get the precondition:

c ≤ r (ps1 + (1 − ps1) rs2) · R(Xs1 ∪ Xs2).

We present the proof of soundness in Appendix B [24]. Note

that some variables in X may not be read or written to by

either block. Such variables become part of Xs1 ∪ Xs2 un-

changed, following Rely’s precondition generation rules.

5.2 Minimum Success Probability of s1
The checker function ensures complete correctness of the
execution of the try block. Recall, rs1 is the probability that

s1 does not make any error that affects the variables tracked

by the postcondition (X ). We must separately calculate the

probability ps1 that the try block executes without any error

and therefore satisfies the check. For example, suppose the

try block that contains these statements:

y = x [p0] 0; z = x [p1] 0;

When the postcondition only tracked the correctness of y,
then rs1 only depends on p0. However, the checker also

ensures that z is correct. Therefore, ps1, the probability that

the check passes, also depends on p1.

To compute the probability the try block executed cor-

rectly, we consider all possible control flow paths within

the try block. A probabilistic choice statement x=a[p]b ex-

ecutes correctly with probability p. If a control flow path

has multiple probabilistic choice statements, with correct

execution probabilities p1,p2, . . . ,pn , then the probability

that that path as a whole executes correctly is p1 ·p2, · . . . ·pn .
Finally, ps1 is the minimum of the products over all paths.

5.3 Simplifying the Preconditions of s1 and s2

In Section 5.1, we assumed that the Rely precondition gener-

ation algorithm generated a simple precondition of the form

c ≤ r · rs1 · R(Xs1) for s1. In general, the Rely precondition

generation algorithm may generate multiple precondition

conjuncts from a single postcondition conjunct c ≤ r · R(X ).

When generating preconditions for s1 (or s2) for our analy-
sis, we can combine the preconditions into a single precon-

dition that subsumes the original preconditions using Rely’s

subsumption rules (Proposition 2 of [10]).

Suppose we obtain the following precondition for s1:

c ≤ r11 · R(X11) ∧ c ≤ r12 · R(X12) ∧ . . . c ≤ r1n · R(X1n).

Similarly supposewe obtain the following precondition for s2:

c ≤ r21 · R(X21) ∧ c ≤ r22 · R(X22) ∧ . . . c ≤ r2n · R(X2n)

Using the subsumption rule, we can replace s1’s precon-
dition with c ≤ r · rs1 · R(Xs1) and s2’s precondition with

c ≤ r · rs2 · R(Xs2), such that

rs1 = min(r11, r12, . . . , r1n), rs2 = min(r21, r22, . . . , r2n),

Xs1 = X11 ∪ X12 ∪ . . . ,X1n , and Xs2 = X21 ∪ X22 ∪ . . . ,X2n .

5.4 Full Example: Redo as Recovery
Simply re-doing the computation that experienced an error

is a common recovery pattern. Below, the left side shows

the analyzed code. Here, p1,p2 ∈ [0, 1] and usually p1 ≤ p2.
The right side shows Aloe’s generated preconditions for the

postcondition 0.99 ≤ R({x}). The recovery block increases

the reliability of x from p1 ·R({y}) to (p1+(1−p1)p2) ·R({y}).

try {

x = y [p1] rand();

} check (f(x, y))

recover {

x = y [p2] rand();

}




7→

{0.99 <= (ps1 + (1 − ps1)p2)R({y})}
try { /* ps1 = p1 */

{0.99 <= p1 ∗ R({y})}

x = y [p1] rand();

{0.99 <= R({x})}

} check (f(x, y))

recover {

{0.99 <= p2 ∗ R({y})}

x = y [p2] rand();

{0.99 <= R({x})}

}

{0.99 <= R({x})}




Similarly Aloe’s analysis shows that repeating the calcula-

tion in the try block on the same hardware at most n times

upon detecting errors can increase the reliability of x to

(1 − (1 − p1)
n) · R({y}). Such precise reliability calculations

cannot be done with existing methods such as Rely.
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Table 1. Checker Function Correctness Probabilities

checker detects error

YES NO

s1 experiences error pT P pFN
s1 does not experience error pFP pTN

s1
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s2
× r (1 − ps1)pT P (1 − r2)R(X2)error (1 − r
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Figure 7. Probabilities for Imperfect Checkers

6 Reliability Analysis: Imperfect Checker
Aloe’s reliability analysis can also be extended to checker

functions that fail to capture all errors, or detect spurious

errors. We specify imperfect checker functions through the

common probability of false positives (pFP ) and the probability
of false negatives (pFN ). We define them in Table 1, together

with the probabilities of true positives (pT P ) and true nega-

tives (pTN ). Recall thatpT P +pFN = 1 andpFP +pTN = 1. These

probabilities impact the reliability of the try-check-recover

blocks. We next show how Aloe generates preconditions

for try-check-recover statements that use imperfect check-

ers. Later, we discuss how we can express different checkers

(together with additional assumptions) in this framework.

6.1 Precondition Generator
Consider the same program and constraint c ≤ r · R(X ) as

in Section 5. Figure 7 shows the tree of possible executions of

the try-check-recover block for an imperfect checker. In this

case, there are three possible execution paths through the

try-check-recover block that result in a correct calculation

of variables in X .

1. s1 executes correctly and the checker passes: This
case is similar to case 1 for the perfect checker, however

this time the check can still fail with probability pFP due

to the imperfect checker.

2. s1 executes correctly but the checker fails, and s2
executes: This case consists of situations where a error
free execution is classified as having an error due to im-

precisions in the checker functions. In this situation s2 is

being executed even though s1 executed correctly.

3. At least one instruction in s1 executes incorrectly,
the checker fails and indicates an error, and s2 exe-
cutes: This case is also similar to case 2 for the perfect

checker, however this time the check can still pass with

probability pFN due to the imperfect checker.

If any variable in X is updated in the try-check-recover

statement, the execution path, where at least one instruction

in s1 executes incorrectly, but the checker passes, always re-

sults in an incorrect calculation. As before, we start with the

postcondition c ≤ r · R(X ) and combine the preconditions

generated independently for s1 and s2. Then we update all

postconditions whose whose joint reliability predicate con-

tains variables updated in the try-check-recover statement.

Case 1. Suppose that running Rely precondition genera-

tion on s1 results in the predicate c ≤ r · rs1 · R(Xs1). The

statement s1 executes correctly and the check passes with

probability ps1 ·pTN . If these two events occur, then the prob-

ability that X is calculated correctly only depends on the

reliability of variables flowing into variables in X that are

updated in s1 (R(Xs1)). The probability that these two events

occur and variables in X are calculated correctly in the first

scenario is therefore ps1 · pTN · R(Xs1).

Case 2. Suppose that running Rely precondition genera-

tion on s2 results in the predicate c ≤ r · rs2 · R(Xs2). The

statement s1 executes correctly but the check fails with prob-
ability ps1 · pFP . If these two events occur, then s2 is run, so

the probability that X is calculated correctly is rs2 · R(Xs2).

The probability that these two events occur and variables in

X are calculated correctly in the second scenario is therefore

ps1 · pFP · rs2 · R(Xs2).

Case 3. s1 executes incorrectly and the check fails with

probability (1 − ps1)pT P . If these two events occur, then s2
is run, so the probability that X is calculated correctly is

rs2 · R(Xs2). The probability that these two events occur and
variables in X are calculated correctly in the third scenario

is therefore (1 − ps1) · pT P · rs2 · R(Xs2).

Calculating R(X ). We can now calculate the total proba-

bility that variables in X are calculated correctly as the sum

of the probabilities of the three cases.

R(X ) = ps1 · pTN · R(Xs1) + ps1 · pFP · rs2 · R(Xs2)

+ (1 − ps1) · pT P · rs2 · R(Xs2)

Using the ordering preposition, we simplify this as follows:

R(X ) ≥ ps1 · pTN · R(Xs1,Xs2) + ps1 · pFP · rs2 · R(Xs1 ∪ Xs2)

+ (1 − ps1) · pT P · rs2 · R(Xs1,Xs2)

R(X ) ≥ (ps1pTN + ps1pFP rs2 + (1−ps1)pT P rs2) · R(Xs1 ∪ Xs2)

Finally, by replacing R(X ) with this probability in the

postcondition, we get the precondition:

c ≤ r ·
(
ps1pTN + ps1pFP rs2 + (1−ps1)pT P rs2

)
·R(Xs1 ∪ Xs2)
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6.2 Full Example: Imperfect Checkers
The following example shows the effect of an imperfect

checker f on reliability precondition generation. We use

the same naming convention as in Table 1.

try {

x = y [p1] rand();

} check (f(x, y))

recover {

x = y [p2] rand();

}



7→

{0.99 <= (ps1 ∗ pTN + ps1 ∗ pFP ∗ p2
+(1 − ps1) ∗ pT P ∗ p2)R({y})}

try { /* ps1 = p1 */

x = y [p1] rand();

} check (f(x, y))

recover {

x = y [p2] rand();

}

{0.99 <= R({x})}




Our analysis shows that while the overall reliability of the

computation is sensitive to the presence of imprecision of

checker functions, using checkers still significantly improves

the reliability over the unchecked computation.

6.3 Classes of Imperfect Checkers
We consider three main classes of imperfect checkers. The

first class are those executed on unreliable hardware, just like

the try and recover blocks. Thus theymay also produce incor-

rect values during the check. If the checker function has the

reliability specification <r*R(Args)>, then pFN = pFP = r .
The second class of imperfect checkers, are randomized

computations called property checkers [21] in theoretical

computer science, which may identify all incorrect results

(pFN = 0), but may fail to identify a correct result (pFP > 0).

The third class of imperfect checkers use machine learning

to infer a function f’ that approximates the perfect checker

f from data (e.g., outlier detection [1] or DNN checkers [30]).

The probabilities p̂FP and p̂FN are estimated from training

and validation data. But using these estimates in our equa-

tion requires care. For Rely and Aloe, Reliability is defined

irrespective of the input (i.e., it is valid for all inputs), and ran-
domness comes from errors in the computation. In contrast,

p̂FP and p̂FN are estimated from the distribution of inputs

during the training/validation of f’. The reliability predi-

cates then only hold under the assumption that the input

distribution remains the same between training/validation

and production runs of the exact and unreliable programs.

7 Methodology
Benchmarks. To evaluate Aloe, we implemented a set of

benchmarks from several application domains. These bench-

marks can tolerate error in the output and have been studied

in the approximate computing literature:

• PageRank: Computes PageRank for nodes in a graph [37].

We verify the reliability of one iteration of the PageRank

kernel for one node.

• Scale: Computes a bigger version of an image. We verify

the reliability of calculating one pixel of the output image.

• Blackscholes: Computes the prices of a portfolio of stock op-

tions.We verify the reliability of computing an option price.

• SSSP: Computes Single Source Shortest Path in a graph.

We verify the reliability of one iteration of the SSSP kernel

for one node.

• BFS: Breadth first search in a graph. We verify the reliabil-

ity of one iteration of the search kernel for one node.

• SOR: A kernel for computing successive over-relaxation

(SOR). We verify the reliability of one iteration of the SOR

kernel for one element of the 2D array.

• Motion:Apixel-block search algorithm from the x264 video

encoder. We verify that the reliability of computing the

sum of squared differences (SSD) for one candidate block.

• Sobel: Sobel edge-detection filter calculation. We verify the

reliability of calculating one pixel of the output image.

Table 2. Benchmarks Details

LoC LoC LoC
Benchmark Source (kernel) (total) (unrolled)
PageRank CRONO [2] 20 45 720K

Scale Chisel [33] 57 79 561K

Blackscholes Chisel [33] 81 97 270K

SSSP CRONO [2] 22 31 800K

BFS CRONO [2] 14 30 720K

SOR Chisel [33] 24 37 1500K

Motion Rely [10] 14 32 150K

Sobel AxBench [46] 34 45 160K

Table 2 presents benchmark statistics, including the bench-

mark suite we derived the code from (Column 2), the size

of the computation kernel (Column 3), the full benchmark

(Column 4), and after unrolling loops (Column 5). These

lines exclude setup and I/O code. The inputs we used for the

experiments are listed in Appendix C [24].

Unreliable Operations. We used the probabilistic choice

statements to simulate two different unreliable architectures

where arithmetic operations can fail and produce an incor-

rect output with probability 10
−3

and 10
−4

respectively. That

is, the reliability of arithmetic operations in the two archi-

tectures is 0.999 and 0.9999 respectively. We executed each

benchmark with a runtime library that would randomly re-

place the result of arithmetic operations with 0 (as an error

value) based on the error probability of the architecture.

Specifications andCheckers. Each benchmark has at least

one try-check-recover block. The try block executes on the

architecturewhere arithmetic operators have reliability 0.999.

The recover block executes the same code on the more re-

liable architecture where arithmetic operators have relia-

bility 0.9999. For perfect checkers, we assumed a hardware

technique with support for detecting errors [13, 32, 35]. For

imperfect checkers, we use multiple false-positive and false-

negative values in the range of those in Topaz [1].
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Table 3. Verified Kernel and End-to-End Reliability Postconditions

Benchmarks Kernel-Level End-to-End
Postcondition Aloe Rely Postcondition Aloe Rely

PageRank 0.9999 ≤ R(newPagerank) ✓(3ms) ×(3ms) 0.99 ≤ R(PageRank) ✓(23.33s) ×(19.73s)

Scale 0.9999 ≤ R(newPixel) ✓(2ms) ×(2ms) 0.99 ≤ R(ImageOut) ✓(10.48s) ×(8.79s)

Blackscholes 0.9999 ≤ R(optionPrice) ✓(3ms) ×(2ms) 0.99 ≤ R(Prices) ✓(6.51s) ×(5.60s)

SSSP 0.9999 ≤ R(dist) ✓(3ms) ×(3ms) 0.99 ≤ R(Distances) ✓(18.60s) ×(18.25s)

BFS 0.9999 ≤ R(visited) ✓(3ms) ×(4ms) 0.99 ≤ R(Visited) ✓(15.22s) ×(15.14s)

SOR 0.9999 ≤ R(result) ✓(1ms) ×(1ms) 0.99 ≤ R(ArrayOut) ✓(21.02s) ×(17.90s)

Motion 0.9999 ≤ R(MinSSD) ✓(45ms) ×(45ms) 0.99 ≤ R(MinSSD) ✓(4.42s) ×(4.19s)

Sobel 0.9999 ≤ R(ImageOut) ✓(1ms) ×(1ms) 0.99 ≤ R(ImageOut) ✓(2.10s) ×(1.80s)

Environment. We ran all experiments on a computer with

a Intel Xeon 3.6GHz CPU with 32 GB RAM that was running

Ubuntu 18.04. We implemented the analysis using ANTLR

for parsing and Python as the backend. For empirical evalu-

ation, we compiled our benchmarks to the Go language and

added instrumentation to track the number of errors and the

end-to-end error magnitude.

8 Evaluation
8.1 Static Reliability Analysis: Perfect Checkers
Table 3 shows the reliability postcondition we verified for

each benchmark in the presence of a perfect checker. Col-

umn 1 is the benchmark, Column 2 is the verified reliability

postcondition for the benchmark kernel, and Column 3 indi-

cates if the analysis is able to verify the bound (✓) or not (×)
along with the runtime for the analysis. Column 4 shows if

the same bound can be verified through a naive Rely analysis

that treats the try-check-recover statement as a if-then-else

statement as discussed in Section 2.2, and the runtime for that

analysis. Columns 5, 6, and 7 show the results of the same

analysis for the end-to-end reliability of the benchmark.

The results show that our analysis can verify the reliability

of recovery mechanisms better than the existing analyses.

Aloe can verify all kernel bounds, while the naive Rely ap-

proach fails to compute a satisfactory bound. This is because

when treating the try-check-recover block as a if-then-else

statement, Rely considers the lower reliability of the two

branches as the reliability of the entire statement. In con-

trast, when using our approach with a perfect checker, the

reliability of the try-check-recover block is greater than the

reliability of the try and recover blocks in isolation, since our

analysis takes into account the fact that both try and recover

block need to fail together for an error to be introduced.

For most kernels, our approach performs the analysis

in less than 3 milliseconds. The Motion kernel executes a

computation for a large number of iterations leading to in-

creased analysis time after unrolling. For end-to-end relia-

bility, Aloe’s analysis was able to prove surprisingly strong

bounds on reliability for all benchmarks. Rely once again

Table 4. Maximum Verifiable Reliability Postconditions for

kernels with an Imperfect Checker

Benchmarks Perfect Imperfect
TP:1.0 TP:0.95 TP:1.0 TP:0.9 TP:0.8
TN:1.0 TN:0.95 TN:0.95 TN:0.9 TN:0.8

PageRank 0.9999 0.9982 0.9968 0.9964 0.9375

Scale 0.9999 0.9993 0.9999 0.9987 0.9976

Blackscholes 0.9999 0.9992 0.9999 0.9985 0.9971

SSSP 0.9999 0.9995 0.9999 0.9991 0.9982

BFS 0.9999 0.9959 0.9999 0.9994 0.9839

SOR 0.9999 0.9997 0.9999 0.9994 0.9989

Motion 0.9999 0.9912 0.9918 0.8385 0.7031

Sobel 0.9999 0.9995 0.9999 0.9991 0.9982

failed to satisfy these postconditions, for the same reason as

above. In all cases, our analysis takes less than 25 seconds.

8.2 Static Reliability Analysis: Imperfect Checkers
Table 4 shows the results of attempting to verify the same

reliability postconditions for kernels as in Table 3 for each

benchmark. Column 1 shows the benchmark and Column 2

shows the highest reliability that can be verified for a perfect

checker. The next columns show the highest reliability that

can be verified for an imperfect checker with a particular

true positive (TP) rate and true negative (TN) rate. For all

kernels except Motion, the verifiable postcondition reliability

remains above 0.99 when pTP,pTN ≥ 0.9, but degrades due
to the possibility of false classifications in the checker. The

reliability of the Motion kernel degrades faster as it executes

a large number of iterations that compound the unreliability

incurred through the imperfect checker.

8.3 Empirical Results
We empirically confirmed the results of our static analy-

sis of end-to-end programs for a perfect checker. We ran

each verified program 2000 times and calculated the average

output error due to unreliable operations and the fraction

of runs where the output was different from a completely

reliable execution (fail rate). 2000 runs allows us to verify

that the empirically calculated fail-rate is less than 0.01 (the
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Table 5. Empirical Reliability Results

Benchmarks Error Perfect Checker No Recovery
Metric Error Fail% Error

PageRank ℓ2 1.54 × 10
−5

0.7% 4.04 × 10
−4

Scale PSNR 56.023 dB 0.55% 38.280 dB

Blackscholes ℓ2 6.26 × 10
−8

0.15% 4.80 × 10
−5

SSSP ℓ2 2.82 × 10
−3

0.1% 4.27 × 10
−3

BFS ℓ2 0 0.15% 4.25 × 10
−5

SOR ℓ2 9.25 × 10
−5

0.75% 1.00 × 10
−3

Motion SSD 0 0.15% 9.85 × 10
−4

Sobel ℓ2 2.63 × 10
−5

0.95% 2.69 × 10
−5

verified bound) using a one-sided binomial test (p0 = 0.99,
p1 = 0.9837, α = 0.05, β = 0.2).

Table 5 gives the result of the empirical evaluation for each

program. Column 1 shows the benchmark. Column 2 shows

the error metric we used. We used error metrics that were

used in prior work in the area – for Motion, it is the relative

error in the calculated minimum SSD, for Scale, it is the PSNR

of the unreliable output, and for the other benchmarks it

is the ℓ2 norm of the output vector. Columns 3 and 4 show

the error and the fail rate (percentage of runs with incorrect

results) for a perfect checker. Column 5 shows the error

when the program does not use a recovery mechanism. The

error values are the average over the runs in which a failure

occurred (as most runs execute correctly).

The results show that the empirically calculated reliability

(1 − fail rate) is always within the bounds verified by Aloe

for a perfect checker. Further, when these benchmarks do
fail, the error in the final output is small. This shows the

amenability of these benchmarks to approximations. For

BFS and Motion, the program automatically corrected errors

that occurred, without any intervention.

The results also show how the error increased, in some

cases significantly, when the program did not have a recovery

mechanism. Further, in all benchmarks, the failure rate also

exceeded the 1% limit.

9 Related Work
Approximate Program Analyses. Many static analyses

have been proposed in the recent years for analyzing approx-

imate or unreliable computations [5, 6, 8–10, 20, 33, 38, 42].

All existing analyzes suffer from imprecision when analyz-

ing computations with recovery mechanisms. Our analysis

extends Rely by adding additional precondition generation

rules for recovery mechanisms which generate less conser-

vative preconditions compared to Rely.

Error Detection. Hardware error detectors [13, 17, 19, 32]
typically consist of special circuits within the processors and

memory units which can detect if an error has occurred. The

accuracy of these detectors is limited by circuit size and en-

ergy requirements [32]. Another approach is to run the same

computation on multiple processors at the same time [35, 44]

and report an error if the computations disagree. However

this requires a significant amount of redundant computation.

Mahmoud et al. [30] propose augmenting complex calcu-

lations with small neural networks that analyze the input

and output to approximately determine if an error occurred.

Achour and Rinard [1] use outlier detection by constructing

feature vectors from inputs and outputs. Our approach is

agnostic of the nature of the error detection mechanism. We

expose the checker interface (via the probabilities of false

positives and false negatives) and show how to incorporate

both perfect and imperfect checkers in the analysis.

RecoveryMechanisms.Many systems deal with hardware

failures using the checkpoint/restore method [29], which

periodically saves the program state to reliable memory

and restores the program state should an error occur. Lan-

guages such as Relax [13] and Topaz [1] expose recovery

mechanisms to the developer. Relax allows retrying the

unreliable computation (on the same unreliable hardware)

as well as discarding incorrect calculations. Topaz instead

opts for reexecuting the computation on a perfectly reli-

able hardware or droppoing tasks (following [40]). Several

approaches in approximate computing provide implicit re-

covery from inaccuracy by dynamically adapting the approx-

imation to the input properties [3, 25, 34, 45]. Containment

Domains [12] provide programming constructs to define

various software error detection and recovery mechanisms.

None of these approaches provide a static analysis of reliabil-

ity. Aloe is the first static analysis of reliability for programs

with recovery mechanisms.

10 Conclusion
This work presented Aloe, a quantitative static analysis of re-

liability of programs with recovery blocks. The Aloe analysis

supports reasoning about both perfect and imperfect detec-

tion of errors, as well as reliable and unreliable recovery code.

It implemented a novel precondition generator for recover

blocks, built on top of Rely’s analysis. We implemented Aloe

and applied it to a set of eight programs previously used

in approximate computing research. Our results show that

Aloe can verify significantly higher reliability conditions

compared to the existing Rely analysis. Moreover, the end-

to-end accuracy of the verified computations exhibits only

small accuracy losses.
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